Data Sheet, May 2000

mining

C504 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Edition 2000-05

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2000. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

C504 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

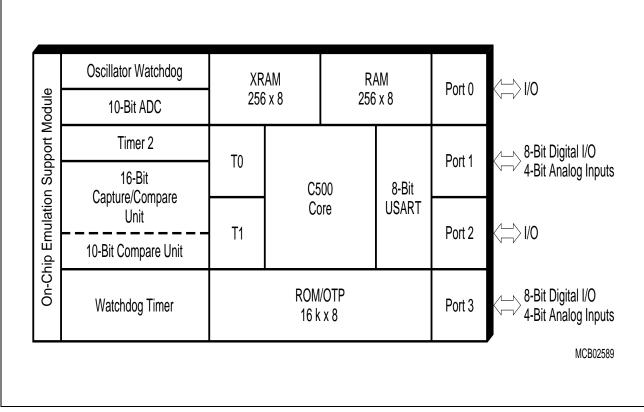
C504

Revision History:		2000-05
Previous V	ersion:	1996-05
Page Subjects (m		ajor changes since last revision)
35 - 40	OTP Memory Operation is added.	
41	Table on Vei	rsion Byte Content is added.
57 - 60	AC Characte	ristics of Programming Mode is added.
several	$V_{\rm CC}$ is replaced by $V_{\rm DD}$.	
several	Specification	for SAH-C504 is removed

Enhanced Hooks TechnologyTM is a trademark and patent of Metalink Corporation licensed to Infineon Technologies.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com



8-Bit Single-Chip Microcontroller C500 Family

C504

- Fully compatible to standard 8051 microcontroller
- Up to 40 MHz external operating frequency
- 16 Kbyte on-chip program memory
 - C504-2R: ROM version (with optional ROM protection)
 - C504-2E: programmable OTP version
 - C504-L: without on-chip program memory
- 256 byte on-chip RAM
- 256 byte on-chip XRAM
- Four 8-bit ports
 - 2 ports with mixed analog/digital I/O capability
- Three 16-bit timers/counters
 - Timer 2 with up/down counter feature

Further features are listed next page.

Figure 1 C504 Functional Units

C504

- Capture/compare unit for PWM signal generation and signal capturing
 - 3-channel, 16-bit capture/compare unit
 - 1-channel, 10-bit compare unit
- Full duplex serial interface (USART)
- 10-bit A/D Converter with 8 multiplexed inputs
- · Twelve interrupt sources with two priority levels
- On-chip emulation support logic (Enhanced Hooks Technology™)
- Programmable 15-bit Watchdog Timer
- Oscillator Watchdog
- Fast Power On Reset
- Power Saving Modes
 - Idle mode
 - Power-down mode with wake-up capability through INTO
- M-QFP-44 package
- Temperature ranges: SAB-C504 T_A :
 - SAB-C504
 T_A :
 0 to 70 °C

 SAF-C504
 T_A :
 40 to 85 °C

 SAK-C504
 T_A :
 40 to 125 °C

 (max. operating frequency: 24 MHz)

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code indentifies:

- The derivative itself, i.e. its function set
- the specified temperature range
- the package and the type of delivery

For the available ordering codes for the C504, please refer to the "**Product Information Microcontrollers**" which summarizes all available microcontroller variants.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

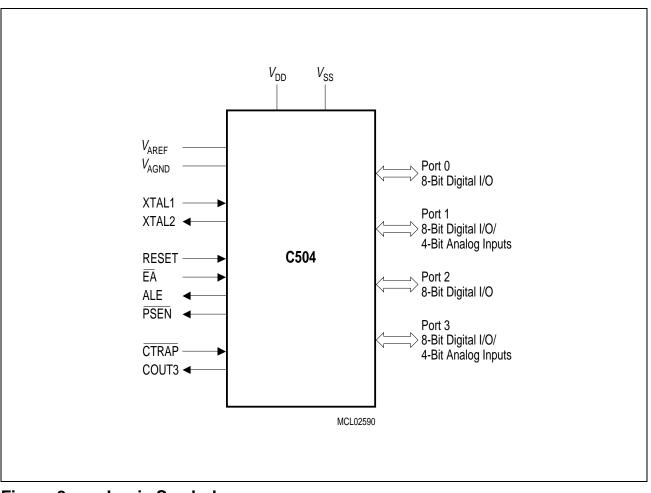


Figure 2 Logic Symbol

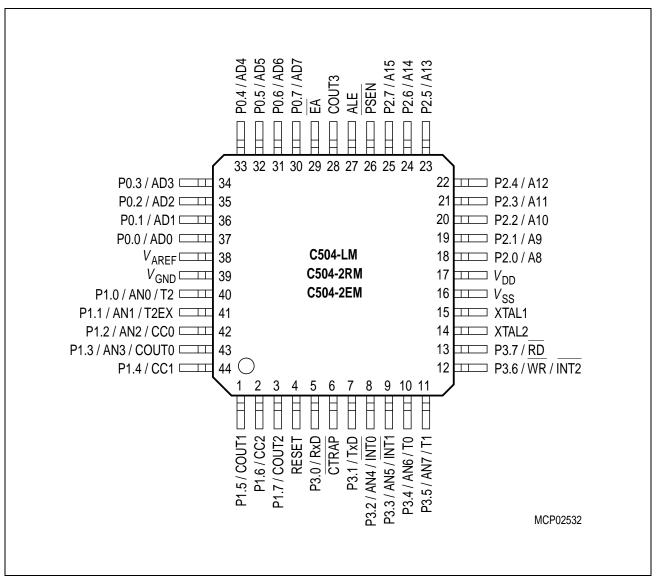


Figure 3Pin Configuration (top view)

Table 1	Pin Definitions and Functions

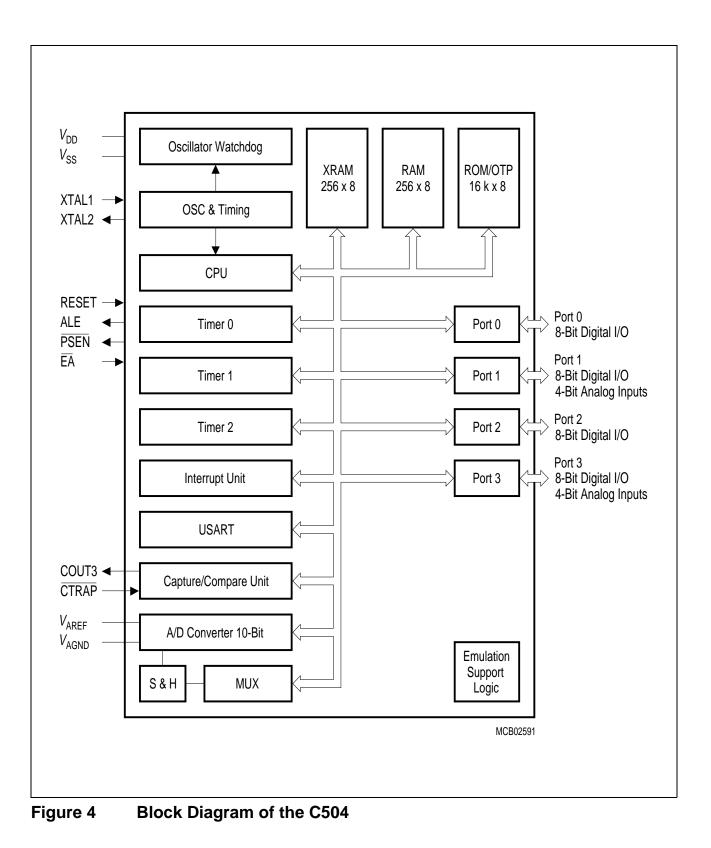
Symbol	Pin Number (P-MQFP-44)	I/O ¹⁾	Function					
P1.0 - P1.7	40 - 44, 1 - 3	I/O	Port 1 is an 8-bit bidirectional port. Port 1 pins can be used					
			for digital input/output. P1.0 - P1.3 can also be used as analog inputs of the A/D converter. As secondary digital functions, Port 1 contains the Timer 2 pins and the Capture/Compare inputs/outputs. Port 1 pins are assigned to be used as analog inputs via the register P1ANA.					
			The functions are as follows:	signed to the pins of Port 1 as				
	40		P1.0 / AN0 / T2	Analog input channel 0 / input to Timer 2				
	41		P1.1 / AN1 / T2EX	Analog input channel 1 / capture/reload trigger of Timer 2 up-down count				
	42		P1.2 / AN2 / CC0	Analog input channel 2 / input/output of capture/ compare channel 0				
	43		P1.3 / AN3 / COUT0	Analog input channel 3 / output of capture/compare channel 0				
	44		P1.4 / CC1	Input/output of capture/ compare channel 1				
	1		P1.5 / COUT1	Output of capture/compare channel 1				
	2		P1.6 / CC2	Input/output of capture/ compare channel 2				
	3		P1.7 / COUT2	Output of capture/compare channel 2				
RESET	4	1	RESET A high level on this pin for two machine cycles where the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits power-on reset using only an external capacitor to V_{DD} .					

Symbol	Pin Number (P-MQFP-44)	I/O ¹⁾	Function					
P3.0 - P3.7	5, 7 - 13	I/O	Port 3 is an 8-bit bidirectional port. P3.0 (R×D) and P3.1 (T×D) operate as defined for the C501. P3.2 to P3.7 contain the external interrupt inputs, timer inputs, and four of the analog inputs of the A/D converter. Port 3 pins are assigned to be used as analog inputs via the bits of SFR P3ANA. P3.6/WR can be assigned as a third interrupt input.					
			The functions are a follows:	assigned to the pins of port 3 as				
	5		P3.0 / RxD	Receiver data input (asynch.) or data input/output (synch.) of serial interface				
	7		P3.1 / TxD	Transmitter data output (asynch.) or clock output (synch.) of serial interface				
	8		P3.2 / AN4 / INTO	Analog input channel 4 / external interrupt 0 input / Timer 0 gate control input				
	9		P3.3 / AN5 / INT1	Analog input channel 5 / external interrupt 1 input / Timer 1 gate control input				
	10		P3.4 / AN6 / T0	Analog input channel 6 / Timer 0 counter input				
	11		P3.5 / AN7 / T1	Analog input channel 7 / Timer 1 counter input				
	12		P3.6 / WR / INT2	WR control output; latches the data byte from port 0 into the external data memory / external interrupt 2 input				
	13		P3.7 / RD	RD control output; enables the external data memory				

Symbol	Pin Number (P-MQFP-44)	I/O ¹⁾	Function
CTRAP	6	1	CCU <u>Trap Input</u> With CTRAP = low, the compare outputs of the CAPCOM unit are switched to the logic level as defined in the COINI register (if they are enabled by the bits in SFR TRCON). CTRAP is an input pin with an internal pullup resistor. For power saving reasons, the signal source which drives the CTRAP input should be at high or floating level during power-down mode.
XTAL2	14	_	XTAL2 Output of the inverting oscillator amplifier.
XTAL1	15	-	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise/fall times specified in the AC characteristics must be observed.
P2.0 - P2.7	18-25	I/O	Port 2 is a bidirectional I/O port with internal pullup resistors. Port 2 pins that have "1"s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, Port 2 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup resistors when issuing "1"s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), Port 2 issues the contents of the P2 special function register.

Table 1Pin Definitions and Functions (cont'd)

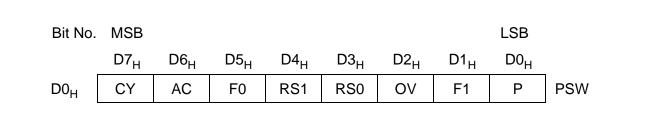
Symbol	Pin Number (P-MQFP-44)	I/O ¹⁾	Function				
PSEN	26	0	The Program Store Enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods except during external data memory accesses. Remains high during internal program execution.				
ALE	27	Ο	The Address Latch Enable output is used for latching the low-byte of the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access. When instructions are executed from internal ROM $(\overline{EA} = 1)$ the ALE generation can be disabled by clearing bit EALE in SFR SYSCON.				
COUT3	28	0	10-Bit compare channel output This pin is used for the output signal of the 10-bit Compare Timer 2 unit. COUT3 can be disabled and set to a high or low state.				
ĒĀ	29	1	External Access Enable When held at high level, instructions are fetched from the internal ROM (C504-2R only) when the PC is less than 4000 _H . When held at low level, the C504 fetches all instructions from external program memory. For the C504-L, this pin must be tied low.				
P0.0 - P0.7	37 - 30	I/O	Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have "1"s written to them float; and in that state, can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program or data memory. In this application, it uses strong internal pullup resistors when issuing "1" s. Port 0 also outputs the code bytes during program verification in the C504-2R. External pullup resistors are required during program (ROM) verification.				
V_{AREF}	38	—	Reference voltage for the A/D converter.				


Table 1Pin Definitions and Functions (cont'd)

Symbol	Pin Number (P-MQFP-44)	I/O ¹⁾	Function
V_{AGND}	39	-	Reference ground for the A/D converter.
V _{SS}	16	-	Ground (0 V)
V_{DD}	17	_	Power Supply (+ 5 V)

1) I = Input,

O = Output



CPU

The C504 is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in 1.0 μ s (24 MHz: 500 ns, 40 MHz: 300 ns).

Special Function Register PSW (Address D0_H)

Bit	Functior	า					
СҮ	Carry Fla Used by	•	c instructions.				
AC	-	/ Carry F instructio	lag ns which execute BCD operations.				
F0	General	Purpose	Flag 0				
RS1 RS0	•	Register Bank Select Control bits These bits are used to select one of the four register banks.					
	RS1	RS0	Function				
	0	0	Bank 0 selected, data address 00 _H -07 _H				
	0	1	Bank 1 selected, data address 08 _H -0F _H				
	1	0	Bank 2 selected, data address 10 _H -17 _H				
	1	1	Bank 3 selected, data address 18 _H -1F _H				
OV	Overflov Used by	•	c instruction.				
F1	General	Purpose	Flag 1				
P		ed by har	rdware after each instruction to indicate an odd/ one" bits in the accumulator.				

Reset Value: 00_H

Memory Organization

The C504 CPU manipulates operands in the following four address spaces:

- up to 64 Kbyte of program memory: 16K ROM for C504-2R

16K OTP for C504-2E

- up to 64 Kbyte of external data memory
- 256 bytes of internal data memory
- 256 bytes of internal XRAM data memory
- a 128 byte special function register area

Figure 5 illustrates the memory address spaces of the C504.

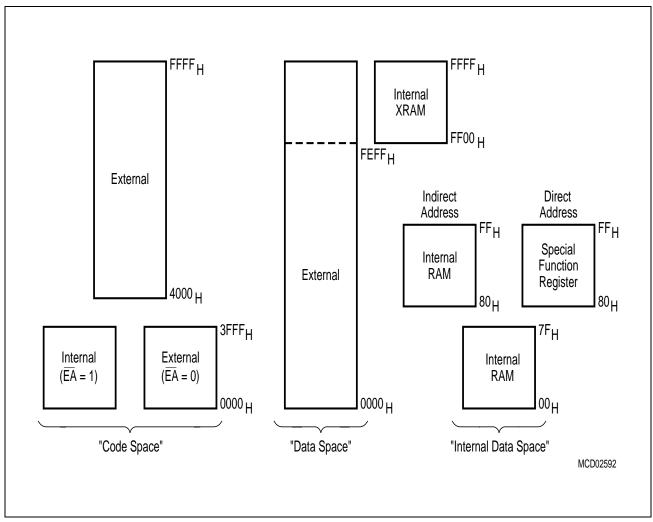


Figure 5 C504 Memory Map

C504

Reset and System Clock Operation

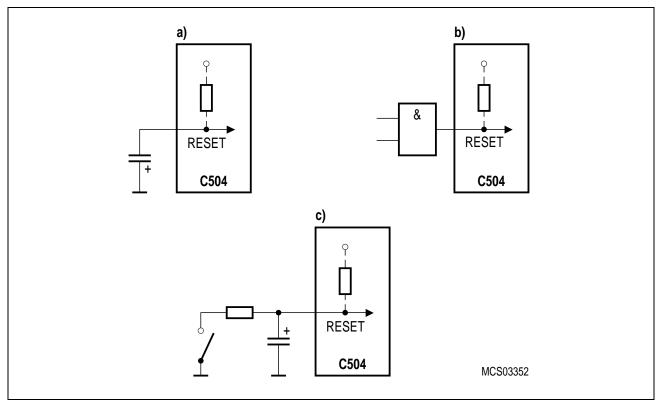
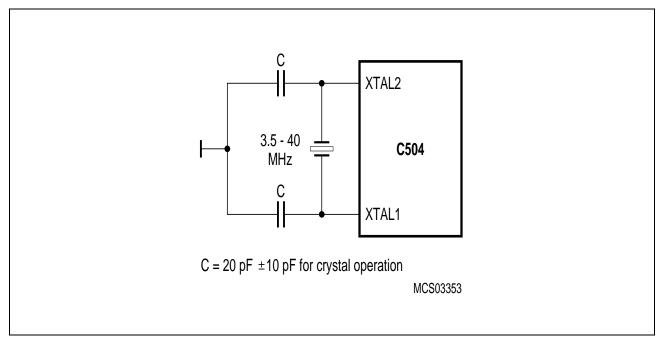
The reset input is an active high input. An internal Schmitt trigger is used at the input for noise rejection. Since the reset is synchronized internally, the RESET pin must be held high for at least two machine cycles (24 oscillator periods) while the oscillator is running.

During reset, pins ALE and PSEN are configured as inputs and should not be stimulated externally. (An external stimulation at these lines during reset activates several test modes which are reserved for test purposes. This, in turn, may cause unpredictable output operations at several port pins).

At the reset pin, a pulldown resistor is internally connected to $V_{\rm SS}$ to allow a power-up reset with an external capacitor only. An automatic reset can be obtained when $V_{\rm DD}$ is applied by connecting the reset pin to $V_{\rm DD}$ via a capacitor. After $V_{\rm DD}$ has been turned on, the capacitor must hold the voltage level at the reset pin for a specific time to effect a complete reset.

The time required for a reset operation is the oscillator start-up time and the time for 2 machine cycles, which must be at least 10 - 20 ms, under normal conditions. This requirement is typically met using a capacitor of 4.7 to 10 μ F. The same considerations apply if the reset signal is generated externally (**Figure 6b**). In each case, it must be assured that the oscillator has started up properly and that at least two machine cycles have passed before the reset signal goes inactive.

Figure 6 shows the possible reset circuitries.

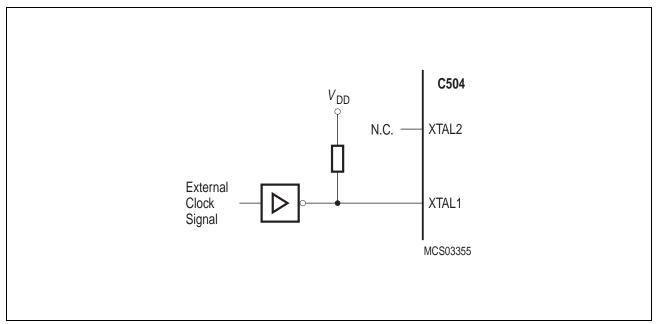
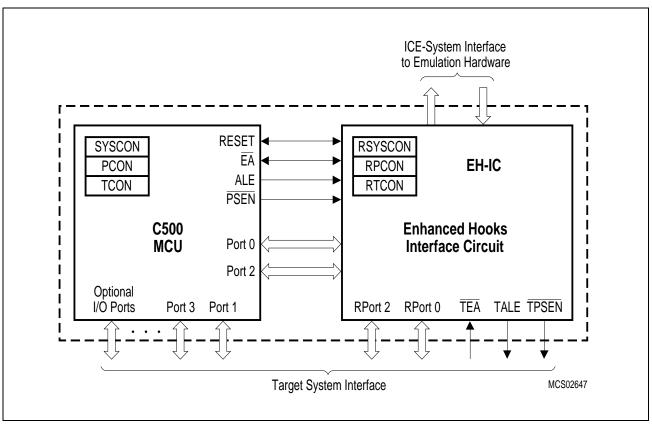

Figure 6Reset Circuitries

Figure 7 shows the recommended oscillator circuit for the C504, while **Figure 8** shows the circuit for using an external clock source.

Figure 7 Recommended Oscillator Circuit



Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative way to control the execution of C500 MCUs and to gain extensive information on the internal operation of the controllers. Emulation of on-chip ROM based programs is possible, too.

Each production chip has built-in logic for the support of the Enhanced Hooks Emulation Concept. Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation and production chips are identical.

The Enhanced Hooks TechnologyTM, which requires embedded logic in the C500 allows the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate all operating modes of the different versions of the C500. This includes emulation of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in single step mode and to read the SFRs after a break.

Figure 9 Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, Port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks Emulation Concept to control the operation of the device during emulation and to transfer informations about the program execution and data transfer between the external emulation hardware (ICE-system) and the C500 MCU.

Special Function Registers

All registers, except the program counter and the four general purpose register banks, reside in the special function register area.

The 63 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. All SFRs with addresses where address bits 0-2 are 0 (e.g. 80_{H} , 88_{H} , 90_{H} , 98_{H} , ..., $F0_{H}$, $F8_{H}$) are bit-addressable.

The SFRs of the C504 are listed in **Table 2** and **Table 3**. In **Table 2**, they are organized in groups which refer to the functional blocks of the C504. **Table 3** illustrates the contents of the SFRs in numeric order of their addresses.

Block	Symbol	Name	Addr.	Contents after Reset
CPU	ACC B DPH DPL PSW SP SYSCON	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Register Stack Pointer System Control Register	$\begin{array}{c} {\bf E0_{H}}^{1)} \\ {\bf F0_{H}}^{1)} \\ 83_{H} \\ 82_{H} \\ {\bf D0_{H}}^{1)} \\ 81_{H} \\ 81_{H} \end{array}$	
Interrupt System	IEN0 IEN1 CCIE ²⁾ IP0 IP1 ITCON	Interrupt Enable Register 0 Interrupt Enable Register 1 Capture/Compare Interrupt Enable Reg. Interrupt Priority Register 0 Interrupt Priority Register 1 Interrupt Trigger Condition Register	$\begin{array}{c} \mathbf{A8_{H}}^{1)} \\ A9_{H} \\ D6_{H} \\ \mathbf{B8_{H}}^{1)} \\ B9_{H} \\ 9A_{H} \end{array}$	$\begin{array}{c} 0 \\ 0 \\ X \\ 0 \\ 0 \\ 0 \\ 0 \\ X \\ 0 \\ 0 \\$
Ports	P0 P1 P1ANA ²⁾ P2 P3 P3ANA ²⁾	Port 0 Port 1 Port 1 Analog Input Selection Register Port 2 Port 3 Port 3 Analog Input Selection Register	80_{H}^{1} 90_{H}^{1} $90_{H}^{1)4}$ $A0_{H}^{1}$ $B0_{H}^{1)4}$	$ \begin{array}{c} FF_{H} \\ FF_{H} \\ XXXX1111_{B}^{3)} \\ FF_{H} \\ FF_{H} \\ FF_{H} \\ XX1111XX_{B}^{3)} \end{array} $
A/D- Converter	ADCON0 ADCON1 ADDATH ADDATL P1ANA ²⁾ P3ANA ²⁾	A/D Converter Control Register 0 A/D Converter Control Register 1 A/D Converter Data Register High Byte A/D Converter Data Register Low Byte Port 1 Analog Input Selection Register Port 3 Analog Input Selection Register		$\begin{array}{c} XX000000_{B}{}^{3)} \\ 01XXX000_{B}{}^{3)} \\ 00_{H} \\ 00XXXXXK_{B}{}^{3)} \\ XXX1111_{B}{}^{3)} \\ XX1111XX_{B}{}^{3)} \end{array}$
Serial Channels	PCON ²⁾ SBUF SCON	Power Control Register Serial Channel Buffer Register Serial Channel Control Register	87 _H 99 _H 98 _H ¹⁾	000X0000 _B XX _H ³⁾ 00 _H
Timer 0/ Timer 1	TCON TH0 TH1 TL0 TL1 TMOD	Timer 0/1 Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register	88 _H ¹⁾ 8C _H 8D _H 8A _H 8B _H 89 _H	00 _H 00 _H 00 _H 00 _H 00 _H

Table 2 Special Function Registers - Functional Blocks

1) Bit-addressable special function registers

2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.

3) X means that the value is undefined and the location is reserved

Table 2	Special Function Registers - Functional Blocks (cont'd)								
Block	Symbol	Name	Addr.	Contents after Reset					
Timer 2	T2CON T2MOD RC2H RC2L TH2 TL2	Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload Capture Register, High Byte Timer 2 Reload Capture Register, Low Byte Timer 2 High Byte Timer 2 Low Byte	$\begin{array}{c} \textbf{C8}_{\textbf{H}}^{1)} \\ \textbf{C9}_{\textbf{H}} \\ \textbf{CB}_{\textbf{H}} \\ \textbf{CA}_{\textbf{H}} \\ \textbf{CD}_{\textbf{H}} \\ \textbf{CD}_{\textbf{H}} \\ \textbf{CC}_{\textbf{H}} \end{array}$	$\begin{array}{c} 00_{H} \\ XXXXXX0_{B}^{3)} \\ 00_{H} \\ 00_{H} \\ 00_{H} \\ 00_{H} \end{array}$					
Capture / Compare Unit	CT1CON CCPL CCPH CT1OFL CT1OFH CMSEL0 CMSEL1 COINI TRCON CCL0 CCH0 CCL0 CCH0 CCL1 CCH1 CCL2 CCH2 CCH2 CCH2 CCIR CCIE ²⁾ CT2CON CP2L CP2H CMP2L CMP2H BCON	Compare timer 1 control register Compare timer 1 period register, low byte Compare timer 1 offset register, high byte Compare timer 1 offset register, high byte Capture/compare mode select register 0 Capture/compare mode select register 1 Compare output initialization register Trap enable control register Capture/compare register 0, low byte Capture/compare register 0, low byte Capture/compare register 1, low byte Capture/compare register 1, low byte Capture/compare register 2, low byte Capture/compare register 2, low byte Capture/compare interrupt request flag reg. Capture/compare interrupt enable register Compare timer 2 period register, low byte Compare timer 2 period register, low byte Compare timer 2 compare register, high byte	$\begin{array}{c} {\sf E1}_{\sf H} \\ {\sf DE}_{\sf H} \\ {\sf DF}_{\sf H} \\ {\sf E6}_{\sf H} \\ {\sf E7}_{\sf H} \\ {\sf E3}_{\sf H} \\ {\sf E4}_{\sf H} \\ {\sf E2}_{\sf H} \\ {\sf C2}_{\sf H} \\ {\sf C2}_{\sf H} \\ {\sf C3}_{\sf H} \\ {\sf C3}_{\sf H} \\ {\sf C5}_{\sf H} \\ {\sf C6}_{\sf H} \\ {\sf D6}_{\sf H} \\ {\sf D2}_{\sf H} \\ {\sf D3}_{\sf H} \\ {\sf D5}_{\sf H} \\ {\sf D7}_{\sf H} \end{array}$	$\begin{array}{c} 00010000_{B}\\ 00_{H}\\ 0$					
Watchdog Timer	WDCON WDTREL	Watchdog Timer Control Register Watchdog Timer Reload Register	C0_H¹⁾ 86 _H	XXXX0000 _B ³⁾ 00 _H					
Power Saving Mode	PCON ²⁾ PCON1	Power Control Register Power Control Register 1	87 _H 88 _H ^{1) 4)}	000X0000 _B ³⁾ 0XXXXXX _B ³⁾					

Table 2 Special Function Registers - Functional Blocks (cont'd)

1) Bit-addressable special function registers

2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.

3) X means that the value is undefined and the location is reserved

Table 3										
Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80 _H ²⁾	P0	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
86 _H	WDTREL	00 _H	WDT PSEL	.6	.5	.4	.3	.2	.1	.0
87 _H	PCON	000X- 0000 _B	SMOD	PDS	IDLS	-	GF1	GF0	PDE	IDLE
88 _H ²⁾	TCON	00 _H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
88 _H ¹⁾³⁾	PCON1	0XXX- XXXX _B	EWPD	-	-	-	-	-	-	-
89 _H	TMOD	00 _H	GATE	C/T	M1	MO	GATE	C/T	M1	M0
8A _H	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8B _H	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8C _H	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8D _H	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
90 _H ²⁾	P1	FF _H	.7	.6	.5	.4	.3	.2	T2EX	T2
90 _H ²⁾³⁾	P1ANA	XXXX- 1111 _B	_	_	-	-	EAN3	EAN2	EAN1	EAN0
98 _H ²⁾	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
99 _H	SBUF	ХХ _Н	.7	.6	.5	.4	.3	.2	.1	.0
9A _H	ITCON	0010- 1010 _B	IT2	IE2	I2ETF	I2ETR	I1ETF	I1ETR	IOETF	I0ETR
A0 _H ²⁾	P2	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
A8 _H ²⁾	IEN0	0X00- 0000 _B	EA	-	ET2	ES	ET1	EX1	ET0	EX0
A9 _H	IEN1	XX00- 0000 _B	_	-	ECT1	ECCM	ECT2	ECEM	EX2	EADC

 Table 3
 Contents of the SFRs, SFRs in Numeric Order of their Addresses

1) X means that the value is undefined and the location is reserved

2) Bit-addressable special function registers

Table 3Contents of the SFRs, SFRs in Numeric Order of their Addresses (cont'd)									
Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	FF _H	RD	WR	T1	Т0	INT1	INT0	TxD	RxD
P3ANA	XX11- 11XX _B	_	_	EAN7	EAN6	EAN5	EAN4	_	_
SYSCON	XX10- XXX0 _B	-	-	EALE	RMAP	_	Ι	Ι	XMAP
IP0	XX00- 0000 _B	-	-	PT2	PS	PT1	PX1	PT0	PX0
IP1	XX00- 0000 _B	-	-	PCT1	PCCM	PCT2	PCEM	PX2	PADC
WDCON	XXXX- 0000 _B	-	-	-	-	OWDS	WDTS	WDT	SWDT
CT2CON	0001- 0000 _B	CT2P	ECT2O	STE2	CT2 RES	CT2R	CLK2	CLK1	CLK0
CCL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
T2CON	00 _H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/ RL2
T2MOD	XXXX- XXX0 _B	-	_	-	_	_	-	_	DCEN
RC2L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
RC2H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
TRCON	00 _H	TRPEN	TRF	TREN5	TREN4	TREN3	TREN2	TREN1	TREN0
	Register P3 P3ANA SYSCON IP0 IP1 IP1 WDCON CT2CON CCL0 CCL0 CCH0 CCL1 CCH1 CCL2 CCH2 T2CON T2CON T2CON RC2L T2CON RC2L RC2L RC2H	RegisterContent after Reset1P3FFHP3ANAXX11- 11XXBP3ANAXX10- XX00SYSCONXX00- 000BIP0XX00- 000BIP1XX00- 000BIP1XX00- 000BIP1NX00- 000BCT2CON00HCCL100HCCL200HCCH200HCCH200HCCH200HT2CONXXXCBRC2L00HRC2L00HRC2L00HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200HT1200H	RegisterContent after Reset1Bit 7P3FF _H RDP3ANAXX11- 11XXB-P3ANAXX10- XX0B-SYSCONXX00- 0000B-IP0XX00- 0000B-IP1XX00- 0000B-VDCONXXX0- 0000B-VDCONXX00- 0000B-C12CON001- 0000B-CCL000- 000B.7CCL100- 17.7CCH100- 17.7CCH200- 17.7CCH200- 17.7T2CONXXX0- XX0B.7T2MODXXXA- XX0B.7RC2L00- 17.7T2MODXXXA- XX0B.7RC2L00- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7TL200- 17.7T	Register Content after Reset ¹⁾ Bit 7 Bit 6 P3 FF_H RD WR P3ANA XX11- 11XX _B - - SYSCON XX00- 0000 _B - - IP0 XX00- 0000 _B - - IP1 XX00- 0000 _B - - VDCON XXXX- 0000 _B - - VDCON XXXX- 0000 _B - - CL0 00 _H .7 6 CCH0 00 _H .7 6 CCH1 00 _H .7 6 CCH2 00 _H .7 6 T2CON 00 _H .7 6 CCH2 00 _H .7 6	Register after Reset**Bit 7Bit 6Bit 5P3FF _H RDWRT1P3ANAXX11- 11XXBEAN7SYSCONXX10- XXX0BEALEIP0XX00- 0000BPT2IP1XX00- 0000BPCT1WDCONXXX2- 0000BPCT1VDCONXXX2- 0000BCT2CON0001- 0000BCT2PECT2OSTE2CCL000H.7.6.5CCL100H.7.6.5CCL100H.7.6.5CCL200H.7.6.5CCL200H.7.6.5CCL200H.7.6.5T2CONXXX- XX0BT2MODXXXA- XX0BRC2L00H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7.6.5TL200H.7<	Register after Reset*Bit 7 Reset*Bit 6 Reset*Bit 5 ResBit 4P3FF _H RDWRT1T0P3ANAXX11- 11XXBEAN7EAN6SYSCONXX10- XX0BEALERMAPIP0XX00- 0000BPT2PSIP1XX00- 0000BPC11PCCMWDCONXXX2- 0000BVDCONXXX2- 0000BCT2CON001- 0000BCT2PECT2OSTE2CT2 RESCCL000H.7.6.5.4CCL100H.7.6.5.4CCL200H.7.6.5.4CCL300H.7.6.5.4CCH200H.7.6.5.4CCH200H.7.6.5.4CCH200H.7.6.5.4T2CONQNH.7.6.5.4CCH200H.7.6.5.4T2CONQNH.7.6.5.4RC2L00H.7.6.5.4RC2L00H.7.6.5.4RC2L00H.7.6.5.4RC2L00H.7.6.5.4RC2L00H.7.6.5.4R	Register after Reset1)Bit 7Bit 6Bit 5Bit 4Bit 3P3FF _H RDWRT1T0INT1P3ANAXX11- 11XX _B EAN7EAN6EAN5SYSCONXX00- 0000 _B EALERMAP-IP0XX00- 0000 _B PT2PSPT1IP1XX00- 0000 _B PCT1PCCMPCT2WDCONXXX2- 0000 _B OWDSCT2CON0001- 0000 _B CT2PECT20STE2CT2 RESCT2RCCL000 _H .7.6.5.4.3CCL100 _H .7.6.5.4.3CCL200 _H .7.6.5.4.3CCL200 _H .7.6.5.4.3CCL200 _H .7.6.5.4.3T2CON00 _H .7.6.5.4.3CCL200 _H .7.6.5.4.3T2CON00 _H .7.6.5.4.3T2CON00 _H .7.6.5.4.3CCL200 _H .7.6.5.4.3T2CON00 _H .7.6.5.4.3T2CON00 _H .7.6.5.4.3T2CON00 _H .7.6.5.4.3 <td>Register Content fitter Reset* Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 P3 F_H RD WR T1 T0 INT1 INT0 P3ANA XX11 - EAN7 EAN6 EAN5 EAN4 SYSCON XX10 - EALE RMAP - - IP0 XX00 - PT PS PT1 PX1 IP1 XX00 - PC PCM PCCM PCT2 PCEM WDCON XXX2* - PC PCT1 PCCM PCT2 PCEM 0000 D001 PC PCT2 PC PC PC PC PC PC VDCON XXX2* P P PC PC<td>Register Content after Reset* Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 P3 FF_H RD WR T1 T0 INT1 INT0 TxD P3ANA XX11- 11XX_B - - EAN7 EAN6 EAN5 EAN4 - SYSCON XX10- XXX0_B - - EALE RMAP - - - IP0 XX00- 0000_B - - PT2 PS PT1 PX1 PT0 IP1 XX00- 0000_B - - - PCCM PCT2 PCEM PX2 WDCON XXXx- 00000_B - - - - OWDS WDT CT2C0N 0001 - PC ST2 CT2 CLK2 CLK2 CLK1 CCL0 00_H .7 .6 .5 .4 .3 .2 .1 CCL1 00_H .7 .6 .5 <td< td=""></td<></td></td>	Register Content fitter Reset* Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 P3 F_H RD WR T1 T0 INT1 INT0 P3ANA XX11 - EAN7 EAN6 EAN5 EAN4 SYSCON XX10 - EALE RMAP - - IP0 XX00 - PT PS PT1 PX1 IP1 XX00 - PC PCM PCCM PCT2 PCEM WDCON XXX2* - PC PCT1 PCCM PCT2 PCEM 0000 D001 PC PCT2 PC PC PC PC PC PC VDCON XXX2* P P PC PC <td>Register Content after Reset* Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 P3 FF_H RD WR T1 T0 INT1 INT0 TxD P3ANA XX11- 11XX_B - - EAN7 EAN6 EAN5 EAN4 - SYSCON XX10- XXX0_B - - EALE RMAP - - - IP0 XX00- 0000_B - - PT2 PS PT1 PX1 PT0 IP1 XX00- 0000_B - - - PCCM PCT2 PCEM PX2 WDCON XXXx- 00000_B - - - - OWDS WDT CT2C0N 0001 - PC ST2 CT2 CLK2 CLK2 CLK1 CCL0 00_H .7 .6 .5 .4 .3 .2 .1 CCL1 00_H .7 .6 .5 <td< td=""></td<></td>	Register Content after Reset* Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 P3 FF _H RD WR T1 T0 INT1 INT0 TxD P3ANA XX11- 11XX _B - - EAN7 EAN6 EAN5 EAN4 - SYSCON XX10- XXX0 _B - - EALE RMAP - - - IP0 XX00- 0000 _B - - PT2 PS PT1 PX1 PT0 IP1 XX00- 0000 _B - - - PCCM PCT2 PCEM PX2 WDCON XXXx- 00000 _B - - - - OWDS WDT CT2C0N 0001 - PC ST2 CT2 CLK2 CLK2 CLK1 CCL0 00 _H .7 .6 .5 .4 .3 .2 .1 CCL1 00 _H .7 .6 .5 <td< td=""></td<>

of their Address as (cont'd) hla 2 -0in Niuma ania Andan

1) X means that the value is undefined and the location is reserved

2) Bit-addressable special function registers

Table	Table 3Contents of the SFRs, SFRs in Numeric Order of their Addresses (cont'd)								ont'd)	
Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D0 _H ²⁾	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
D2 _H	CP2L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D3 _H	CP2H	XXXX. XX00 _B	-	_	_	_	-	_	.1	.0
D4 _H	CMP2L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D5 _H	CMP2H	XXXX. XX00 _B	-	-	_	_	-	-	.1	.0
D6 _H	CCIE	00 _H	ECTP	ECTC	CC2 FEN	CC2 REN	CC1 FEN	CC1 REN	CC0 FEN	CC0 REN
D7 _H	BCON	00 _H	BCMP BCEM	PWM1	PWM0	EBCE	BCERR	BCEN	BCM1	BCM0
D8 _H ²⁾	ADCON0	XX00- 0000 _B	-	-	IADC	BSY	ADM	MX2	MX1	MX0
D9 _H	ADDATH	00 _H	.9	.8	.7	.6	.5	.4	.3	.2
DA _H	ADDATL	00XX- XXXX _B	.1	.0	_	_	-	_	_	_
DC _H	ADCON1	01XX- X000 _B	ADCL1	ADCL0	_	_	_	MX2	MX1	MX0
DE _H	CCPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
DF _H	CCPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E0 _H ²⁾	ACC	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E1 _H	CT1CON	0001- 0000 _B	СТМ	ETRP	STE1	CT1 RES	CT1R	CLK2	CLK1	CLK0
E2 _H	COINI	FF _H	COUT 3I	COUTX I	COUT 2I	CC2I	COUT 1I	CC1I	COUT 0I	CC0I
E3 _H	CMSEL0	00 _H	CMSEL 13	CMSEL 12	CMSEL 11	CMSEL 10	CMSEL 03	CMSEL 02	CMSEL 01	CMSEL 00
E4 _H	CMSEL1	00 _H	0	0	0	0	CMSEL 23	CMSEL 22	CMSEL 21	CMSEL 20
E5 _H	CCIR	00 _H	CT1FP	CT1FC	CC2F	CC2R	CC1F	CC1R	CC0F	CC0R
E6 _H	CT1OFL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E7 _H	CT10FH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F0 _H ²⁾	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

Table 3 Contents of the SFRs, SFRs in Numeric Order of their Addresses (cont'd)

1) X means that the value is undefined and the location is reserved

2) Bit-addressable special function registers

Timer/Counter 0 and 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4.

Mode	Description		ТМС	D		Input	Clock
		Gate	C/T	M1	MO	internal	external (max.)
0	8-bit timer/counter with a divide-by-32 prescaler	Х	Х	0	0	$f_{\rm OSC}/12 \times 32$	$f_{\rm OSC}/24 \times 32$
1	16-bit timer/counter	Х	Х	1	1	<i>f</i> _{OSC} /12	f _{OSC} /24
2	8-bit timer/counter with 8-bit auto-reload	Х	Х	0	0	<i>f</i> _{OSC} /12	f _{OSC} /24
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	X	Х	1	1	<i>f</i> _{OSC} /12	<i>f</i> _{OSC} /24

Table 4Timer/Counter 0 and 1 Operating Modes

In the "timer" function (C/ \overline{T} = '0'), the register is incremented every machine cycle. Therefore the count rate is $f_{OSC}/12$.

In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{OSC}/24$. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. **Figure 10** illustrates the input clock logic.

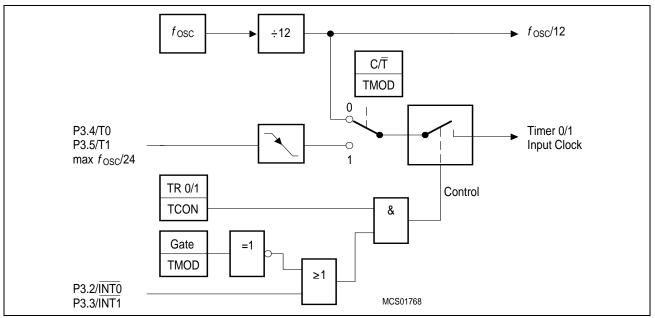


Figure 10 Timer/Counter 0 and 1 Input Clock Logic

Timer/Counter 2

Timer 2 is a 16-bit Timer/Counter with an up/down count feature. It can operate either as a timer or as an event counter. This is selected by bit C/T2 of SFR T2CON. It has three operating modes as shown in **Table 5**.

Mode	T2	CON		T2MOD	T2CON	P1.1/	Remarks	Input	t Clock
	R×CLK or T×CLK	<u>CP/</u> RL2	TR2	DCEN	EXEN	T2EX		internal	external (P1.0/T2)
16-bit Auto-	0	0	1	0	0	X	reload upon overflow	f _{OSC} /12	max f _{OSC} /24
reload	0	0	1	0	1	\downarrow	reload trigger (falling edge)		
	0	0	1	1	Х	0	Down counting		
	0	0	1	1	Х	1	Up counting		
16-bit Cap- ture	0	1	1	Х	0	X	16 bit Timer/ Counter (only up-counting)	f _{OSC} /12	max _{fosc} /24
	0	1	1	Х	1	\downarrow	capture TH2, TL2 \rightarrow RC2H, RC2L		
Baud Rate Gene-	1	Х	1	Х	0	Х	no overflow interrupt request (TF2)	f _{OSC} /2	max _{fosc} /24
rator	1	Х	1	Х	1	Ļ	extra external interrupt ("Timer 2")		
off	Х	Х	0	Х	Х	Х	Timer 2 stops	_	-

Table 5	Timer/Counter 2 Operating Modes

Note: $\downarrow = \neg$ falling edge

Capture/Compare Unit

The Capture/Compare Unit (CCU) of the C504 consists of a 16-bit 3-channel capture/ compare unit (CAPCOM) and a 10-bit 1-channel compare unit (COMP). In compare mode, the CAPCOM unit provides two output signals per channel, which can have inverted signal polarity and non-overlapping pulse transitions. The COMP unit can generate a single PWM output signal and is further used to modulate the CAPCOM output signals. In capture mode, the value of the Compare Timer 1 is stored in the capture registers if a signal transition occurs at the pins CCx. **Figure 11** shows the block diagram of the CCU.

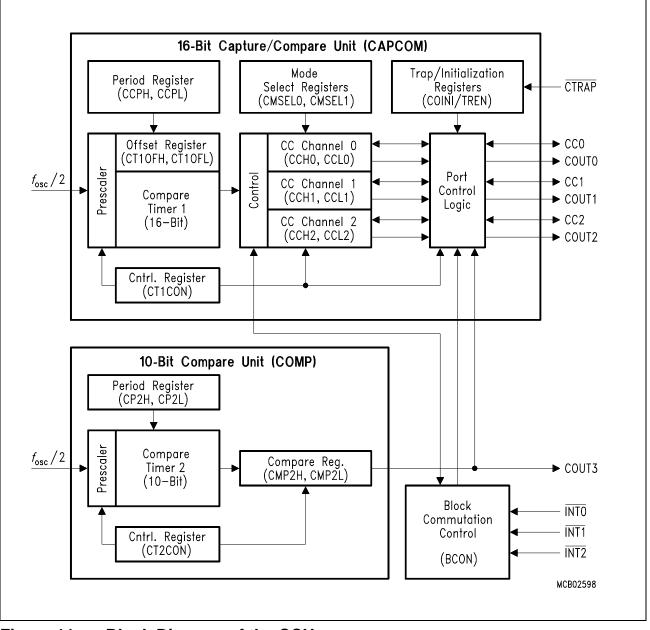
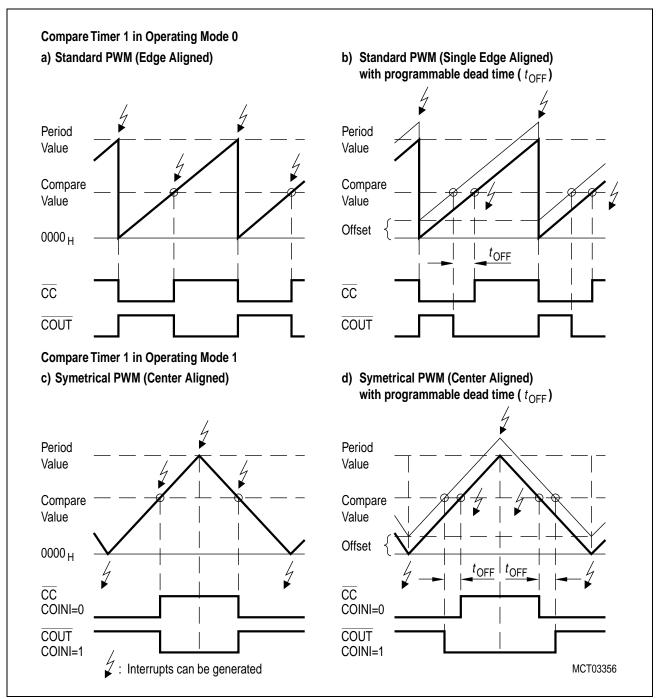



Figure 11 Block Diagram of the CCU

The Compare Timers 1 and 2 are free running, processor clock coupled 16-bit / 10-bit timers; each of which has a count rate with a maximum of $f_{osc}/2$ up to $f_{osc}/256$. The compare timer operations with its possible compare output signal waveforms are shown in **Figure 12**.

Figure 12 Basic Operating Modes of the CAPCOM Unit

Compare Timer 1 can be programmed for both operating modes while Compare Timer 2 works only in operating mode 0 with one output signal of selectable polarity at the pin COUT3.

Serial Interface (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in **Table 6**. The possible baud rates can be calculated using the formulas given in **Table 6**.

Mode	SC	CON	Baud Rate	Description		
	SM0 SM1		_			
0	0	0	f _{OSC} /12	Serial data enters and exits through R×D. T×D outputs the shift clock. 8-bit are transmitted/received (LSB first)		
1	0	1	Timer 1/2 overflow rate	8-bit UART 10 bits are transmitted (through T×D) or received (R×D)		
2	1	0	$f_{\rm OSC}/32$ or $f_{\rm OSC}/64$	9-bit UART 11 bits are transmitted (T×D) or received (R×D)		
3	1	1	Timer 1/2 overflow rate	9-bit UART Like mode 2 except the variable baud rate		

Table 6 USART Operating Modes

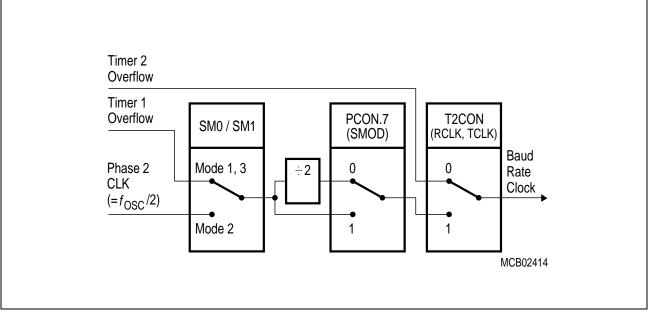


Figure 13 Baud Rate Generation for the Serial Interface

The possible baud rates can be calculated using the formulas given in **Table 7**.

	5	
Source of Baud Rate	Operating Mode	Baud Rate
Oscillator	0 2	$f_{OSC}/12$ (2 ^{SMOD} × f_{OSC})/64
Timer 1 (16-bit timer) (8-bit timer with 8-bit auto-reload)	1, 3 1, 3	$(2^{\text{SMOD}} \times \text{timer 1 overflow rate})/32$ $(2^{\text{SMOD}} \times f_{\text{OSC}})/(32 \times 12 \times (256\text{-TH1}))$
Timer 2	1, 3	$f_{OSC}/(32 \times (65536-(RC2H, RC2L)))$

Table 7Formulas for Calculating Baud Rates

10-Bit A/D Converter

The C504 has a high performance 8-channel 10-bit A/D converter using successive approximation technique for the conversion of analog input voltages. **Figure 14** shows the block diagram of the A/D Converter.

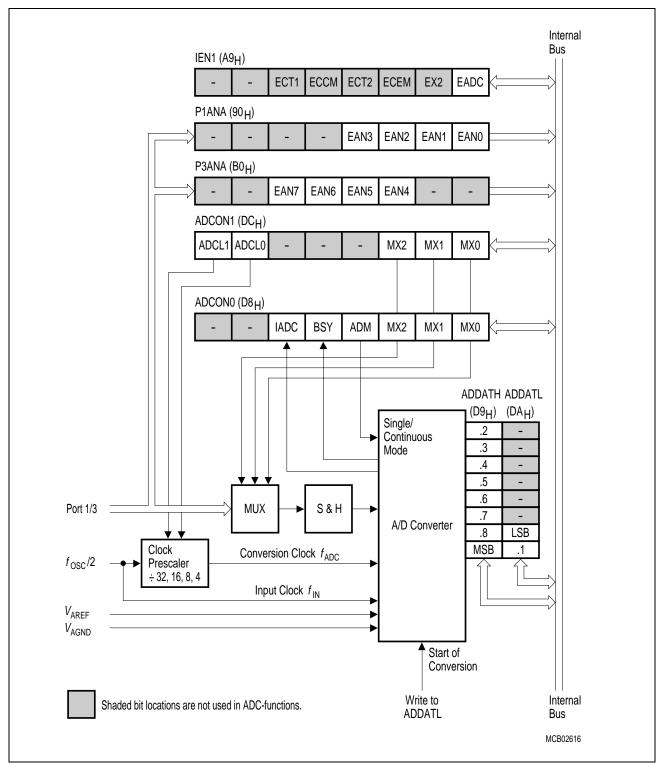


Figure 14 A/D Converter Block Diagram

The A/D Converter uses two clock signals for operation: the conversion clock f_{ADC} (= 1/ t_{ADC}) and the input clock f_{IN} (= 1/ t_{IN}). Both clock signals are derived from the C504 system clock f_{OSC} which is applied at the XTAL pins. The duration of an A/D conversion is a multiple of the period of the f_{IN} clock signal. The table in **Figure 15** shows the prescaler ratios and the resulting A/D conversion times which must be selected for typical system clock rates.

f _{osc} /2	 ÷ 32 ÷ 16 ÷ 8 ÷ 4 Clock P 		Input Clo		>	A/D Converter
Сон	nditions:	$f_{ADC \max} \leq 2$	MHz $f_{\rm IN} =$	$\frac{f_{\rm OSC}}{2} = \frac{1}{2 t_{\rm CLCI}}$	_ _	MCS02617
	C	Durana			C	4/5
MCU System Clock	f _{in} [MHz]	Presca Ratio	ler ADCL1	ADCL0	f _{ADC} [MHz]	A/D Conversion Time [μs]
MCU System Clock Rate (f _{OSC})				ADCL0 0	-	Conversion
MCU System Clock Rate (f _{OSC})	[MHz]	Ratio	ADCL1		[MHz]	Conversion Time [µs]
MCU System Clock Rate (f _{osc}) 3.5 MHz	[MHz] 1.75	Ratio ÷ 4	ADCL1 0	0	[MHz] .438	ConversionTime [μ s]48 × t_{IN} = 27.4
MCU System Clock Rate (f _{osc}) 3.5 MHz 12 MHz 16 MHz	[MHz] 1.75 6	Ratio ÷ 4 ÷ 4	ADCL1 0 0	0 0	[MHz] .438 1.5	Conversion Time [μ s]48 × t_{IN} = 27.448 × t_{IN} = 8
MCU System Clock Rate (f _{osc}) 3.5 MHz 12 MHz	[MHz] 1.75 6 8	Ratio ÷ 4 ÷ 4 ÷ 4 ÷ 4	ADCL1 0 0 0 0 0	0 0 0	[MHz] .438 1.5 2	Conversion Time [μ s] 48 × t _{IN} = 27.4 48 × t _{IN} = 8 48 × t _{IN} = 8 48 × t _{IN} = 6

Figure 15A/D Converter Clock Selection

The analog inputs are located at Port 1 and Port 3 (4 lines on each port). The corresponding Port 1 and Port 3 pins have a port structure, which allows the pins to be used either as digital I/Os or analog inputs. The analog input function of these mixed digital/analog port lines is selected via the registers P1ANA and P3ANA.

C504

Interrupt System

The C504 provides 12 interrupt sources with two priority levels. **Figures 16** and **17** give a general overview of the interrupt sources and illustrate the interrupt request and control flags.

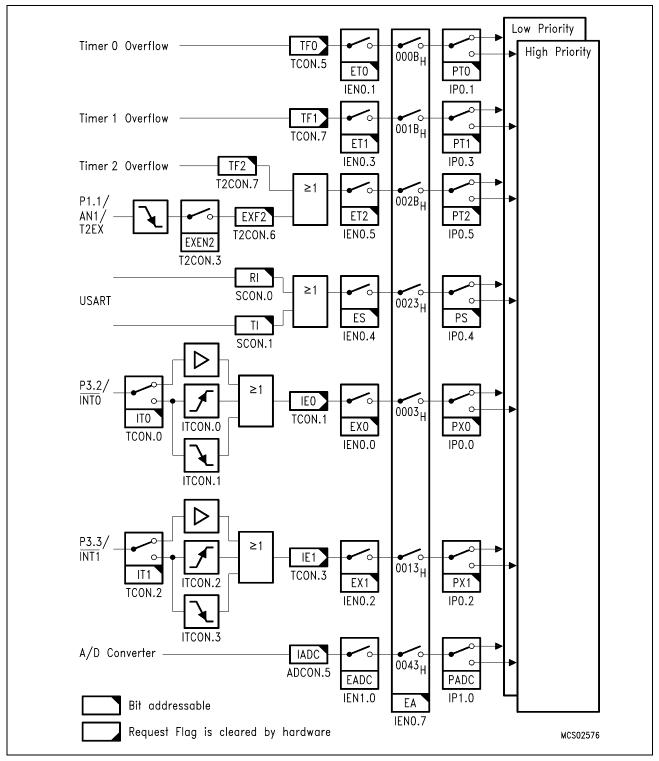


Figure 16 Interrupt Request Sources (Part 1)

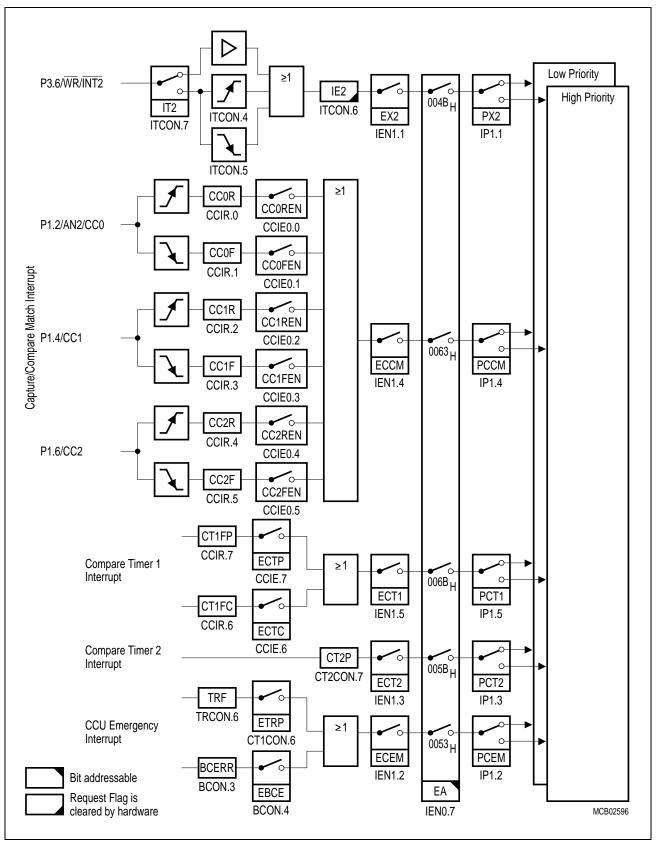


Figure 17 Interrupt Request Sources (Part 2)

Interrupt Source	Vector Address					
External interrupt 0	0003 _H					
Timer 0 interrupt	000B _H					
External interrupt 1	0013 _H					
Timer 1 interrupt	001B _H					
Serial port interrupt	0023 _H					
Timer 2 interrupt	002B _H					
A/D converter interrupt	0043 _H					
External interrupt 2	004B _H					
CAPCOM emergency interrupt	0053 _H					
Compare timer 2 interrupt	005B _H					
Capture/compare match interrupt	0063 _H					
Compare timer 1 interrupt	006B _H					
Power-down interrupt	007B _H					
	Interrupt Source External interrupt 0 Timer 0 interrupt External interrupt 1 Timer 1 interrupt Serial port interrupt Timer 2 interrupt A/D converter interrupt External interrupt 2 CAPCOM emergency interrupt Compare timer 2 interrupt Capture/compare match interrupt Compare timer 1 interrupt					

Table 8 Interrupt Vector Addresses

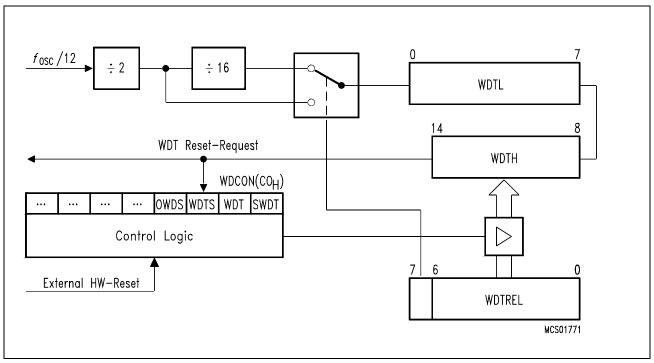
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt sources.

If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in **Table 9**.

Table 9	Interrupt Source Structure
---------	----------------------------

Interrupt Source		Priority
High Priority	Low Priority	
External Interrupt 0	A/D Converter	High
Timer 0 Interrupt	External Interrupt 2	
External Interrupt 1	CCU Emergency Interrupt	
Timer 1 Interrupt	Compare Timer 2 Interrupt	
Serial Channel	Capture/Compare Match Interrupt	
Timer 2 Interrupt	Compare Timer 1 Interrupt	Low

C504


Fail Save Mechanisms

The C504 offers enhanced fail save mechanisms, which allow an automatic recovery from software or hardware failure.

- a programmable 15-bit Watchdog Timer
- Oscillator Watchdog

Programmable Watchdog Timer

The Watchdog Timer in the C504 is a 15-bit timer, which is incremented by a count rate of either $f_{CYCLE}/2$ or $f_{CYCLE}/32$ ($f_{CYCLE} = f_{OSC}/12$). Only the upper 7 bits of the 15-bit watchdog timer count value can be programmed. **Figure 18** shows the block diagram of the programmable Watchdog Timer.

Figure 18 Block Diagram of the Programmable Watchdog Timer

The Watchdog Timer can be started by software (bit SWDT in SFR WDCON), but it cannot be stopped during active mode of the device. If the software fails to refresh the running Watchdog Timer, an internal reset will be initiated. The reset cause (external reset or reset caused by the watchdog) can be examined by software (status flag WDTS in SFR WDCON is set). A refresh of the Watchdog Timer is done by setting bits WDT and SWDT (both in SFR WDCON) consecutively.

This double instruction sequence has been implemented to increase system security.

It must be noted, however, that the Watchdog Timer is halted during the idle mode and power down mode of the processor.

Oscillator Watchdog

The Oscillator Watchdog of the C504 serves for three functions:

- Monitoring of the on-chip oscillator's function

The watchdog supervises the on-chip oscillator's frequency; if it is lower than the frequency of an auxiliary RC oscillator, the internal clock is supplied by this RC oscillator and the C504 is brought into reset. If the failure condition disappears, the C504 executes a final reset phase of typically 1 ms in order to allow the oscillator to stabilize; then, the Oscillator Watchdog reset is released and the part starts program execution again.

- Fast internal reset after power-on

The oscillator watchdog unit provides a clock supply for the reset before the on-chip oscillator has started. The Oscillator Watchdog unit also works identically to the monitoring function.

- Control of external wake-up from software power-down mode

When the software power-down mode is terminated by a low level at pin P3.2/INTO, the Oscillator Watchdog unit ensures that the microcontroller resumes operation (execution of the power-down wake-up interrupt) with the nominal clock rate. In the power-down mode, the RC oscillator and the on-chip oscillator are stopped. Both oscillators are started again when power-down mode is released. When the on-chip oscillator has a higher frequency than the RC oscillator, the microcontroller starts operation after a final delay of typically 1 ms in order to allow the on-chip oscillator to stabilize.

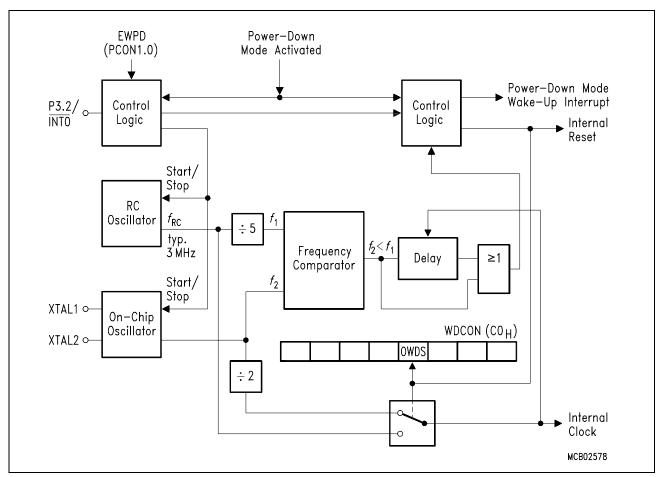


Figure 19 Block Diagram of the Oscillator Watchdog

Power Saving Modes

The C504 provides two power saving modes, the idle mode and the power down mode.

- In the <u>idle mode</u>, the oscillator of the C504 continues to run, but the CPU is gated off from the clock signal. However, the interrupt system, the serial port, the A/D Converter, and all timers with the exception of the Watchdog Timer, are further provided with the clock. The CPU status is preserved in its entirety: the stack pointer, program counter, program status word, accumulator, and all other registers maintain their data during idle mode.
- In the <u>power down</u> mode, the RC oscillator and the on-chip oscillator which operates with the XTAL pins are both stopped. Therefore all functions of the microcontroller are stopped and only the contents of the on-chip RAM, XRAM and the SFRs are maintained. The port pins, which are controlled by their port latches, output the values that are held by their SFRs.

Table 10 gives a general overview of the entry and exit procedures of the power saving modes.

C504

Table 10	Power Saving Modes Overview							
Mode	Entering (2-Instruction Example)	Leaving by	Remarks					
Idle mode	ORL PCON, #01H ORL PCON, #20H	Occurrence of any enabled interrupt Hardware Reset	CPU clock is stopped; CPU maintains their data; peripheral units are active					
			(if enabled) and provided with clock.					
Power	With external wake-up	Hardware Reset	Oscillator is stopped;					
Down mode	capability from power down enabled ORL SYSCON,#10H ORL PCON1,#80H ANL SYSCON,#0EFH ORL PCON,#02H ORL PCON,#40H	P3.2/INT0 goes low for at least 10 μs. It is desired that the pin be held at high level during the power down mode entry and up to the wake-up.	Contents of on-chip RAM and SFRs are maintained.					
	With external wake-up capability from power down disabled ORL PCON,#02H ORL PCON,#40H	Hardware Reset						

If a power saving mode is terminated through an interrupt, including the external wakeup via P3.2/INT0, the microcontroller state (CPU, ports, peripherals) remains preserved. If it is terminated by a hardware reset, the microcontroller is reset to its default state.

In the power down mode of operation, $V_{\rm DD}$ can be reduced to minimize power consumption. It must be ensured, however, that V_{DD} is not reduced before the power down mode is invoked, and that V_{DD} is restored to its normal operating level, before the power down mode is terminated.

OTP Memory Operation (C504-2E only)

The C504-2E is the OTP version of the C504 microcontroller with a 16Kbyte one-time programmable (OTP) program memory. Fast programming cycles are achieved (1 byte in 100 μ s) with the C504-2E. Several levels of OTP memory protection can be selected as well.

To program the device, the C504-2E must be put into the programming mode. Typically, this is not done in-system, but in a special programming hardware. In the programming mode, the C504-2E operates as a slave device similar to an EPROM standalone memory device and must be controlled with address/data information, control lines, and an external 11.5 V programming voltage.

Figure 20 shows the pins of the C504-2E which are required for controlling of the OTP programming mode.

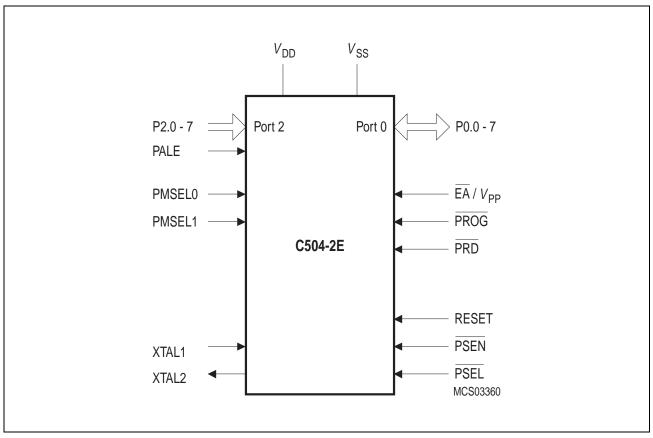


Figure 20 C504-2E Programming Mode Configuration

Pin Configuration in Programming Mode

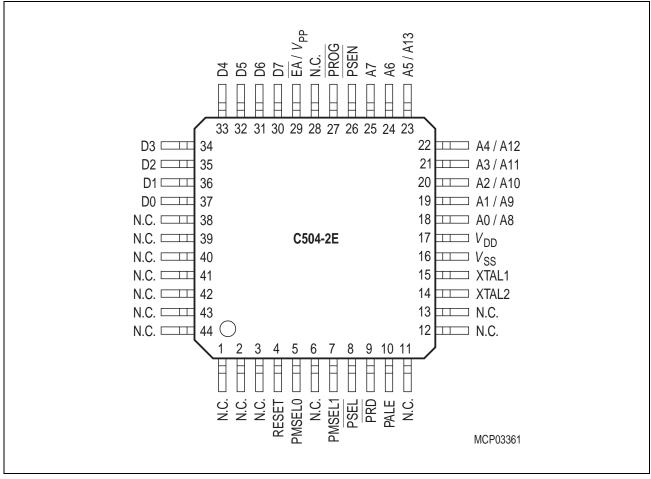


Figure 21 Pin Configuration of the C504-2E in Programming Mode (top view)

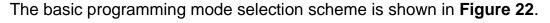
Pin Definitions

Table 11 contains the functional description of all C504-2E pins which are required for OTP memory programming.

	in Progra	mmir	ng Mode					
Symbol	Pin No. P-MQFP-44	I/O	Function					
RESET	4	I	Reset This input must be at static "1" (active) level throughout the entire programming mode.					
PMSEL0 PMSEL1	5 7	1	Programming mode selection pins These pins are used to select the different access modes in programming mode. PMSEL1,0 must satisfy a setup time to the rising edge of PALE. When the logic level of PMSEL1,0 is changed, PALE must be at low level.					
			PMSEL1	PMSEL0	Access Mode			
			0	0	Reserved			
			0	1	Read version bytes			
			1	0	Program/read lock bits			
			1	1	Program/read OTP memory byte			
PSEL	8	I	This input is	s used for t	node select he basic programming mode switched according to Figure 22.			
PRD	9	I	Programming mode read strobe This input is used for read access control for OTP memory read, version byte read, and lock bit read operations.					
PALE	10	1	Programming address latch enable PALE is used to latch the high address lines. The high address lines must satisfy a setup and hold time to/from the falling edge of PALE. PALE must be at low level when the logic level of PMSEL1,0 is changed.					
XTAL2	14	0	XTAL2 Output of th	ne inverting	oscillator amplifier.			

Table 11Pin Definitions and Functions of the C504-2Ein Programming Mode

Symbol	Pin No.	I/O	Function
	P-MQFP-44		
XTAL1	15	I	XTAL1 Input to the oscillator amplifier.
V _{SS}	16	_	Ground (0 V) must be applied in programming mode.
V_{DD}	17	_	Power Supply (+ 5 V) must be applied in programming mode.
P2.0 - P2.7	18 - 25	I	Address lines P2.0 - P2.7 are used as multiplexed address input lines A0 - A7 and A8 - A13. A8 - A13 must be latched with PALE.
PSEN	26	I	Program store enable This input must be at static "0" level during the whole programming mode.
PROG	27	1	Programming mode write strobe This input is used in programming mode as a write strobe for OTP memory program and lock bit write operations. During basic progr <u>amming</u> mode selection, a low level must be applied to PROG.
EA/V _{PP}	29	-	Programming Voltage This pin must be held at 11.5 V (V_{PP}) during programming of an OTP memory byte or lock bit. During an OTP memory read operation, this pin must be at V_{IH} . This pin is also used for basic programming mode selection. For basic programming mode selection, a low level must be applied.
P0.7 - P0.0	30-37	I/O	Data lines In programming mode, data bytes are transferred via the bidirectional D7 - D0 data lines which are located at Port 0.
N.C.	1-3, 6, 11-13, 28, 38-44	_	Not Connected These pins should not be connected in programming mode.



Programming Mode Selection

The selection for the OTP programming mode can be separated into two different parts:

- Basic programming mode selection
- Access mode selection

With basic programming mode selection, the device is put into the mode in which it is possible to access the OTP memory through the programming interface logic. Further, after selection of the basic programming mode, OTP memory accesses are executed by using one of the access modes. These access modes are OTP memory byte program/ read, version byte read, and program/read lock byte operations.

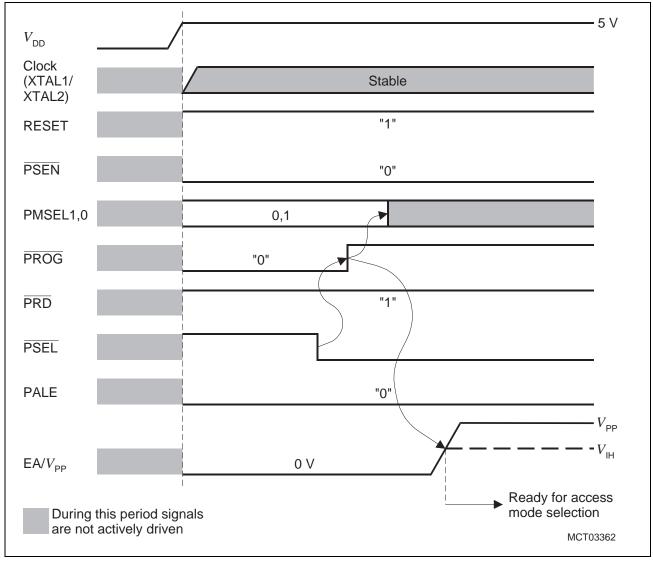


Figure 22Basic Programming Mode Selection

Access Mode	EA/	PROG	PRD	PMSEL		Address	Data	
	V_{PP}			1	0	(Port 2)	(Port 0)	
Program OTP memory byte	V_{PP}	T	Н	Н	Н	A0 - A7 A8 - A15	D0 - D7	
Read OTP memory byte	V_{IH}	Н						
Program OTP lock bits	V_{PP}		Н	Н	L	_	D1,D0	
Read OTP lock bits	V_{IH}	Н		-			see Table 13	
Read OTP version byte	V_{IH}	Н		L	Н	Byte addr. of version byte	D0 - D7	

Table 12 Access Modes Selection

Lock Bits Programming / Read

The C504-2E has two programmable lock bits which, when programmed according to **Table 13**, provide four levels of protection for the on-chip OTP code memory.

			<i>,</i> ,
Lock	Bits	Protection	Protection Type
D1	D0	Level	
1	1	Level 0	The OTP lock feature is disabled. During normal operation of the C504-2E, the state of the \overline{EA} pin is not latched on reset.
1	0	Level 1	During normal operation of the C504-2E, MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory. EA is sampled and latched on reset. An OTP memory read operation is only possible according to ROM/OTP verification mode 2. Further programming of the OTP memory is disabled (reprogramming security).
0	1	Level 2	Same as level 1, but also OTP memory read operation using ROM verification mode 2 is disabled.
0	0	Level 3	Same as level 2; but additionally external code execution by setting EA = low during normal operation of the C504-2E is no more possible. External code execution, which is initiated by an internal program (e.g. by an internal jump instruction above the ROM boundary), is still possible.

Table 13Lock Bit Protection Types

Note: A '1' means that the lock bit is unprogrammed; a '0' means that lock bit is programmed.

Version Bytes

The C504-2E and C504-2R provide three version bytes at mapped address locations FC_H , FD_H , and FE_H . The information stored in the version bytes, is defined by the mask of each microcontroller step. Therefore, the version bytes can be read but not written. The three version bytes hold information as manufacturer code, device type, and stepping code.

The steppings of the C504 contain the following version byte information:

Stepping	Version Byte 0, VR0 (mapped addr. FC _H)	Version Byte 1, VR1 (mapped addr. FD _H)	Version Byte 2, VR2 (mapped addr. FE _⊣)
C504-2R AC-Step	C5 _H	04 _H	01 _H
C504-2E ES-AA-Step	C5 _H	84 _H	01 _H
C504-2E ES-BB-Step	C5 _H	84 _H	04 _H
C504-2E CA-Step	C5 _H	84 _H	09 _H

Table 14 Content of Version Bytes

Future steppings of the C504 will typically have a different value for version byte 2.

Absolute Maximum Ratings

Parameter	Symbol	Liı	Unit	Notes	
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	-
Voltage on $V_{\rm DD}$ pins with respect to ground ($V_{\rm SS}$)	V _{DD}	- 0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	- 10	10	mA	-
Absolute sum of all input currents during overload condition	-	-	100 mA	mA	-
Power dissipation	P _{DISS}	-	1	W	-

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DD}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DD}$ pins with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

Operating Conditions

Parameter	Symbol	Limi	Unit	Notes	
		min.	max.		
Supply voltage	V_{DD}	4.25	5.5	V	-
Ground voltage	V _{SS}		0		-
Ambient temperature SAB-C504 SAF-C504 SAK-C504	$\begin{array}{c} T_{A} \\ T_{A} \\ T_{A} \end{array}$	0 70 - 40 85 - 40 125		°C	_
Analog reference voltage	V_{AREF}	4	V _{DD} + 0.1	V	-
Analog ground voltage	V_{AGND}	$V_{\rm SS} - 0.1$	V _{SS} +0.2	V	-
Analog input voltage	V_{AIN}	V_{AGND}	V_{AREF}	V	-
CPU clock	f_{CPU}	1.75 20		MHz	-

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C504 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C504 will provide signals with the respective characteristics.

SR (**S**ystem Requirement):

The external system must provide signals with the respective characteristics to the C504.

DC Characteristics

(Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test Condition
			min.	max.		
Input low voltage (except EA, RESET, CTRAP)	V _{IL}	SR	- 0.5	0.2 V _{DD} - 0.1	V	_
Input low voltage (EA)	V_{IL1}	SR	- 0.5	0.2 V _{DD} - 0.3	V	-
Input low <u>voltage</u> (RESET, CTRAP)	V_{IL2}	SR	- 0.5	0.2 V _{DD} + 0.1	V	_
Input high voltage (except XTAL1, RESET and CTRAP)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	11)
Input high voltage to XTAL1	$V_{\rm IH1}$	SR	$0.7 V_{\rm DD}$	$V_{\rm DD}$ + 0.5	V	-
Input high voltage to RESET and CTRAP	V_{IH2}	SR	0.6 V _{DD}	V _{DD} + 0.5	v	_
Output low voltage (Ports 1, 2, 3, COUT3)	V _{OL}	СС	_	0.45	V	$I_{\rm OL} = 1.6 \ {\rm mA}^{1)}$
Output low voltage (Port 0, ALE, PSEN)	V _{OL1}	СС	_	0.45	V	$I_{\rm OL} = 3.2 \ {\rm mA}^{1)}$
Output high voltage (Ports 1, 2, 3)	V _{OH}	CC	2.4 0.9 V _{DD}		V	I _{OH} = - 80 μA I _{OH} = - 10 μA
Output high voltage (Ports 1, 3 pins in push-pull mode and COUT3)	V _{OH1}	СС	0.9 V _{DD}	-	V	I _{OH} = - 800 μA

DC Characteristics (cont'd)

(Operating Conditions apply)

Parameter	Symbol		Limit '	Values	Unit	Test Condition
			min.	max.		
Output high voltage (Port 0 in ext <u>ernal</u> bus mode, ALE, PSEN)	V _{OH2}	СС	2.4 0.9 V _{DD}		V	$I_{OH} = -800 \ \mu A^{2)}$ $I_{OH} = -80 \ \mu A^{2)}$
Logic 0 input current (Ports 1, 2, 3)		SR	- 10	- 50	μA	V _{IN} = 0.45 V
Logical 1-to-0 transition current (Ports 1, 2, 3)	I _{TL}	SR	- 65	- 650	μA	$V_{\rm IN}$ = 2 V
Input leakage current (Port 0, EA)	ILI	СС	_	± 1	μA	$0.45 < V_{\rm IN} < V_{\rm DD}$
Pin capacitance	C _{IO}	CC	-	10	pF	$f_{c} = 1 \text{ MHz},$ $T_{A} = 25 \text{ °C}$
Overload current	I _{OV}	SR	_	± 5	mA	7) 8)
Programming voltage (C504-2E)	V_{PP}	SR	10.9	12.1	V	11.5 V ± 5% ¹⁰⁾

Power Supply Current

Parameter			Sym-	Limit	Values	Unit	Test Condition
			bol	typ. ⁸⁾ max. ⁹⁾			
Active mode	C504-2R	24 MHz 40 MHz	I _{DD} I _{DD}	27.4 43.1	35.9 57.2	mA mA	4)
	C504-2E	24 MHz 40 MHz	I _{DD} I _{DD}	20.9 31.0	27.9 41.5	mA mA	
Idle mode	C504-2R	24 MHz 40 MHz	I _{DD} I _{DD}	14.6 22.4	19.3 31.3	mA mA	5)
	C504-2E	24 MHz 40 MHz	I _{DD} I _{DD}	12.3 16.1	16.1 20.9	mA mA	
Power-down	C504-2R		I _{PD}	1	30	μA	$V_{\rm DD}$ = 2 5.5 V ³⁾
mode	C504-2E		I _{PD}	35	60	μA	
At \overline{EA}/V_{PP} in prog. mode	C504-2E		I _{DDP}	-	30	mA	-

Notes:

- Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and Port 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise pulse on ALE line may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt-trigger, or use an address latch with a Schmitt-trigger strobe input.
- 2) Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and \overrightarrow{PSEN} to momentarily fall below the 0.9 V_{DD} specification when the address lines are stabilizing.
- 3) I_{PD} (power-down mode) is measured under following conditions: EA = Port 0 = V_{DD} ; RESET = V_{SS} ; XTAL2 = N.C.; XTAL1 = V_{SS} ; V_{AGND} = V_{SS} ; all other pins are disconnected.
- 4) I_{DD} (active mode) is measured with: <u>XTAL1</u> driven with t_{CLCH}, t_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5 V, V_{IH} = V_{DD} - 0.5 V; XTAL2 = N.C.; EA = Port 0 = Port 1 = RESET = V_{DD}; all other pins are disconnected. I_{DD} would be slightly higher if a crystal oscillator is used (appr. 1 mA).
- 5) I_{DD} (idle mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL1 driven with t_{CLCH} , $t_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{DD} - 0.5$ V; XTAL2 = N.C.; RESET = EA = V_{SS} ; Port 0 = V_{DD} ; all other pins are disconnected;
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. $V_{\text{OV}} > V_{\text{DD}} + 0.5 \text{ V}$ or $V_{\text{OV}} < V_{\text{SS}} 0.5 \text{ V}$). The supply voltage V_{DD} and V_{SS} must remain within the specified limits. The absolute sum of input currents on all port pins may not exceed 50 mA.
- 7) Not 100 % tested, guaranteed by design characterization.
- 8) The typical I_{DD} values are periodically measured at $T_A = +25 \text{ }^{\circ}\text{C}$ and $V_{DD} = 5 \text{ V}$ but not 100% tested.
- 9) The maximum I_{DD} values are measured under worst case conditions ($T_A = 0 \,^{\circ}\text{C}$ or $-40 \,^{\circ}\text{C}$ and $V_{DD} = 5.5 \,^{\circ}\text{V}$)
- 10)This V_{PP} specification is valid for devices with version byte 2 = 02H or higher. Devices with version byte 2 = 01H must be programmed with V_{PP} = 12 V ± 5%.
- 11)For the C504-2E ES-AA-step the V_{IH} min. for $\overline{\text{EA}}$ is 0.8 V_{DD} .

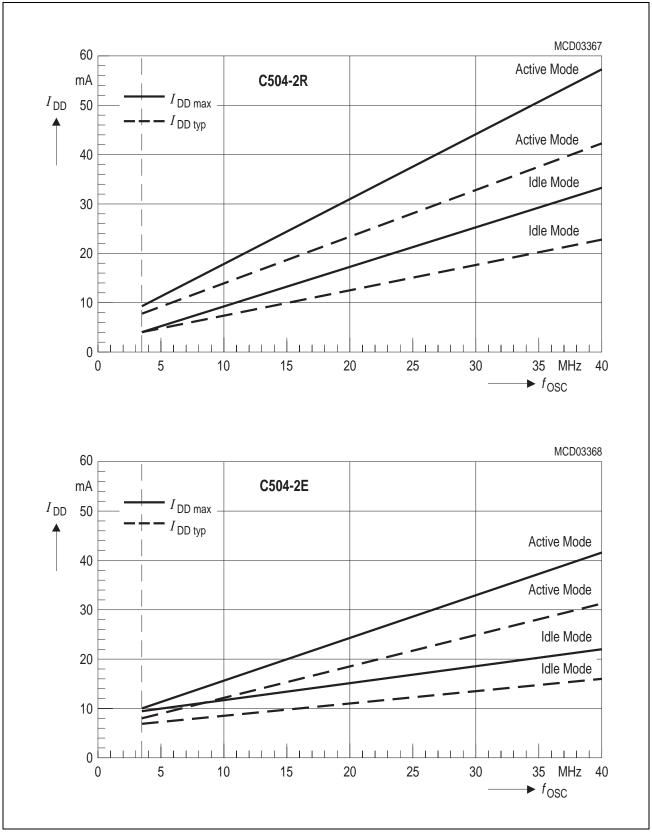


Figure 23 IDD Diagram

ower Supply Current Calculation Formulas
--

Parameter		Symbol	Formula
Active mode	C504-2R	I _{DD typ} I _{DD max}	$\begin{array}{c} 0.98 \times f_{\rm OSC} + 3.9 \\ 1.33 \times f_{\rm OSC} + 4.0 \end{array}$
	C504-2E	I _{DD typ} I _{DD max}	$0.63 \times f_{\rm OSC}$ + 5.75 $0.85 \times f_{\rm OSC}$ + 7.5
Idle mode	C504-2R	I _{DD typ} I _{DD max}	$\begin{array}{c} 0.51 \times f_{\rm OSC} + 2.35 \\ 0.75 \times f_{\rm OSC} + 1.3 \end{array}$
	C504-2E	I _{DD typ} I _{DD max}	$0.24 \times f_{\rm OSC}$ + 6.5 $0.30 \times f_{\rm OSC}$ + 8.86

Note: f_{osc} is the oscillator frequency in MHz. I_{DD} values are given in mA.

A/D Converter Characteristics

(Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test Condition
			min.	max.		
Analog input voltage	V_{AIN}	SR	$V_{\rm AGND}$	V_{AREF}	V	1)
Sample time	t _S	CC	_	$64 \times t_{\rm IN}$ $32 \times t_{\rm IN}$ $16 \times t_{\rm IN}$ $8 \times t_{\rm IN}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ²⁾
Conversion cycle time	t _{ADCC}	CC	-	$384 \times t_{\rm IN}$ $192 \times t_{\rm IN}$ $96 \times t_{\rm IN}$ $48 \times t_{\rm IN}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ³⁾
Total unadjusted error	$T_{\sf UE}$	CC	-	±2	LSB	$V_{\rm SS}$ + 0.5 V $\leq V_{\rm IN}$ $\leq V_{\rm DD}$ - 0.5 V ⁴⁾
			_	± 4	LSB	$V_{\rm SS} < V_{\rm IN} < V_{\rm SS}$ + 0.5 V $V_{\rm DD}$ - 0.5 V < $V_{\rm IN}$ < $V_{\rm DD}^{4)}$
Internal resistance of reference voltage source	R _{AREF}	SR	_	t _{ADC} /250 - 0.25	kΩ	<i>t</i> _{ADC} in [ns] ^{5) 6)}
Internal resistance of analog source	R _{ASRC}	₂ SR	_	t _S /500 - 0.25	kΩ	<i>t</i> _S in [ns] ^{2) 6)}
ADC input capacitance	C_{AIN}	CC	-	50	pF	6)

Notes see next page.

Clock Calculation Table

Clock Prescaler Ratio	ADCI	_1, 0	t _{ADC}	t _s	t _{ADCC}
÷ 32	1	1	$32 \times t_{\rm IN}$	$64 \times t_{\rm IN}$	$384 \times t_{\rm IN}$
÷ 16	1	0	$16 \times t_{\rm IN}$	$32 \times t_{\rm IN}$	$192 \times t_{\rm IN}$
÷8	0	1	$8 \times t_{\rm IN}$	$16 \times t_{\rm IN}$	$96 \times t_{\rm IN}$
÷4	0	0	$4 \times t_{\rm IN}$	$8 \times t_{\rm IN}$	$48 \times t_{\rm IN}$

Further timing conditions:

 $t_{ADC} min = 500 ns$ $t_{IN} = 2/f_{OSC} = 2 t_{CLCL}$

Notes:

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 2) During the sample time, the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_S . After the end of the sample time t_S , changes of the analog input voltage have no effect on the conversion result.
- 3) This parameter includes the sample time t_s , the time for determining the digital result and the time for the calibration. Values for the conversion clock t_{ADC} depend on programming and can be taken from the table on the previous page.
- 4) T_{UE} is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DD} = 4.9 V. It is guaranteed by design characterization for all other voltages within the defined voltage range.
 If an overload condition occurs on maximum 2 not selected analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is permissible.
- 5) During the conversion, the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference source must allow the capacitance to reach their final voltage level within the indicated time. The maximum internal resistance results from the programmed conversion timing.
- 6) Not 100% tested, but guaranteed by design characterization.

AC Characteristics for C504-L / C504-2R / C504-2E

(Operating Conditions apply)

($C_{\rm L}$ for Port 0, ALE and PSEN outputs = 100 pF; $C_{\rm L}$ for all other outputs = 80 pF)

Parameter	Symbol			Limit Valu	es	Unit
			MHz ock	Variable Clock 1/t _{CLCL} = 3.5 MHz to 12 MHz		
		min.	max.	min.	max.	

Program Memory Characteristics

5							
ALE pulse width	t _{LHLL}	CC	127	_	$2t_{CLCL} - 40$	_	ns
Address setup to ALE	t _{AVLL}	CC	43	—	$t_{CLCL} - 40$	_	ns
Address hold after ALE	t _{LLAX}	CC	30	—	$t_{\rm CLCL} - 23$	_	ns
ALE low to valid instr in	t _{LLIV}	SR	_	233	_	$4t_{CLCL} - 100$	ns
ALE to PSEN	t _{LLPL}	CC	58	-	$t_{\rm CLCL} - 25$	_	ns
PSEN pulse width	t _{PLPH}	CC	215	-	$3t_{CLCL} - 35$	-	ns
PSEN to valid instr in	t _{PLIV}	SR	-	150	-	$3t_{CLCL} - 100$	ns
Input instruction hold after PSEN	t _{PXIX}	SR	0	_	0	-	ns
Input instruction float after PSEN	$t_{\text{PXIZ}}^{1)}$	SR	_	63	-	$t_{\rm CLCL} - 20$	ns
Address valid after PSEN	$t_{PXAV}^{1)}$	CC	75	_	$t_{\rm CLCL} - 8$	_	ns
Address to valid instr in	t _{AVIV}	SR	-	302	-	5 <i>t</i> _{CLCL} – 115	ns
Address float to PSEN	t _{AZPL}	CC	0	_	0	_	ns

Notes:

1) Interfacing the C504 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

AC Characteristics for C504-L / C504-2R / C504-2E (cont'd)

Parameter	Symbol		Limit Values				
		12-MHzVariable Clockclock1/t1/t2.5 MHz to 12 MHz					
		min.	min. max. min. max.		max.		

External Data Memory Characteristics

,							
RD pulse width	t _{RLRH}	CC	400	-	$6t_{CLCL} - 100$	_	ns
WR pulse width	t _{WLWH}	CC	400	-	$6t_{CLCL} - 100$	_	ns
Address hold after ALE	t _{LLAX2}	CC	114	-	$2t_{CLCL} - 53$	_	ns
RD to valid data in	t _{RLDV}	SR	_	252	-	5 <i>t</i> _{CLCL} – 165	ns
Data hold after RD	t _{RHDX}	SR	0	_	0	_	ns
Data float after RD	t _{RHDZ}	SR	_	97	_	$2t_{CLCL} - 70$	ns
ALE to valid data in	t _{LLDV}	SR	_	517	_	8 <i>t</i> _{CLCL} – 150	ns
Address to valid data in	<i>t</i> _{AVDV}	SR	_	585	-	9 <i>t</i> _{CLCL} – 165	ns
ALE to WR or RD	t _{LLWL}	CC	200	300	$3t_{CLCL} - 50$	$3t_{CLCL} + 50$	ns
Address valid to WR or RD	<i>t</i> _{AVWL}	CC	203	-	$4t_{CLCL} - 130$	_	ns
WR or RD high to ALE high	t _{WHLH}	CC	43	123	$t_{\rm CLCL} - 40$	$t_{\text{CLCL}} + 40$	ns
Data valid to \overline{WR} transition	t _{QVWX}	CC	33	-	$t_{\rm CLCL} - 50$	-	ns
Data setup before WR	t _{QVWH}	CC	433	-	$7t_{CLCL} - 150$	_	ns
Data hold after WR	t _{WHQX}	CC	33	-	$t_{\rm CLCL} - 50$	_	ns
Address float after RD	t _{RLAZ}	CC	_	0	_	0	ns

External Clock Drive Characteristics

Parameter	Symbol		Limit Values				
			Variable Clock = 3.5 MHz to 12 MHz				
		min.	max.				
Oscillator period	t _{CLCL} SR	83.3	294	ns			
High time	t _{CHCX} SR	20	$t_{\rm CLCL} - t_{\rm CLCX}$	ns			
Low time	t _{CLCX} SR	20	$t_{\rm CLCL} - t_{\rm CHCX}$	ns			
Rise time	t _{CLCH} SR	-	20	ns			
Fall time	t _{CHCL} SR	_	20	ns			

AC Characteristics for C504-L24 / C504-2R24 / C504-2E24

(Operating Conditions apply)

 $(C_{\rm L} \text{ for Port 0, ALE and PSEN outputs} = 100 \text{ pF}; C_{\rm L} \text{ for all other outputs} = 80 \text{ pF})$

Parameter	Symbol			_imit Valu	ies	Unit
			MHz ock	Variable Clock 1/t _{CLCL} = 3.5 MHz to 24 MHz		
		min.	max.	min.	max.	

Program Memory Characteristics

t _{LHLL}	CC	43	_	$2t_{CLCL} - 40$	_	ns
t _{AVLL}	CC	17	-	$t_{\rm CLCL} - 25$	_	ns
t _{LLAX}	CC	17	-	$t_{\rm CLCL} - 25$	-	ns
t _{LLIV}	SR	-	80	_	$4t_{CLCL} - 87$	ns
t _{LLPL}	CC	22	-	$t_{\rm CLCL} - 20$	_	ns
t _{PLPH}	CC	95	-	$3t_{CLCL} - 30$	-	ns
t _{PLIV}	SR	-	60	_	$3t_{CLCL} - 65$	ns
t _{PXIX}	SR	0	_	0	_	ns
$t_{\text{PXIZ}}^{1)}$	SR	_	32	-	<i>t</i> _{CLCL} – 10	ns
t _{PXAV} ¹) CC	37	-	$t_{\rm CLCL} - 5$	-	ns
t _{AVIV}	SR	-	148	_	$5t_{CLCL} - 60$	ns
t _{AZPL}	CC	0	_	0	_	ns
	$ \begin{array}{c} t_{\text{AVLL}} \\ t_{\text{LLAX}} \\ t_{\text{LLIV}} \\ t_{\text{LLPL}} \\ t_{\text{PLPH}} \\ t_{\text{PLIV}} \\ t_{\text{PXIX}} \\ \end{array} \\ \begin{array}{c} t_{\text{PXIZ}}^{1)} \\ t_{\text{PXAV}}^{1} \\ t_{\text{AVIV}} \end{array} $	t_AVLLCC t_{AVLL} CC t_{LLAX} CC t_{LLIV} SR t_{LLPL} CC t_{PLPH} CC t_{PLIV} SR t_{PXIX} SR $t_{PXIZ}^{1)}$ SR $t_{PXAV}^{1)}$ CC t_{AVIV} SR	t_{AVLL} CC17 t_{LLAX} CC17 t_{LLAX} SR- t_{LLIV} SR- t_{LLPL} CC95 t_{PLPH} CC95 t_{PLIV} SR- t_{PXIX} SR0 t_{PXIZ}^{11} SR- t_{PXAV}^{11} CC37 t_{AVIV} SR-	t_{AVLL} CC 17 - t_{LLAX} CC 17 - t_{LLAX} CC 17 - t_{LLIV} SR - 80 t_{LLPL} CC 22 - t_{PLPH} CC 95 - t_{PLIV} SR - 60 t_{PXIX} SR 0 - t_{PXIZ}^{11} SR - 32 t_{PXAV}^{11} SR - 148	t_{AVLL} CC 17 - $t_{CLCL} - 25$ t_{LLAX} CC 17 - $t_{CLCL} - 25$ t_{LLAX} CC 17 - $t_{CLCL} - 25$ t_{LLIV} SR - 80 - t_{LLPL} CC 22 - $t_{CLCL} - 20$ t_{PLPH} CC 95 - $3t_{CLCL} - 30$ t_{PLIV} SR - 60 - t_{PXIX} SR 0 - 0 $t_{PXIZ}^{(1)}$ SR - 32 - $t_{PXAV}^{(1)}$ SR - 32 - t_{AVIV} SR - 148 -	t_{AVLL} CC 17 - $t_{CLCL} - 25$ - t_{LLAX} CC 17 - $t_{CLCL} - 25$ - t_{LLAX} CC 17 - $t_{CLCL} - 25$ - t_{LLNV} SR - 80 - $4t_{CLCL} - 87$ t_{LLPL} CC 22 - $t_{CLCL} - 20$ - t_{PLPH} CC 95 - $3t_{CLCL} - 30$ - t_{PLPH} CC 95 - $3t_{CLCL} - 30$ - t_{PLIV} SR - 60 - $3t_{CLCL} - 65$ t_{PXIX} SR 0 - 0 - $t_{PXIZ}^{(1)}$ SR - 32 - $t_{CLCL} - 10$ $t_{PXAV}^{(1)}$ SR - 32 - $t_{CLCL} - 5$ - t_{AVIV} SR - 148 - $5t_{CLCL} - 60$

Notes:

1) Interfacing the C504 to devices with float times up to 37 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

AC Characteristics for C504-L24 / C504-2R24 / C504-2E24 (cont'd)

Parameter	Symbol	Limit Values				
		24-MHz clock		Variable Clock 1/t _{CLCL} = 3.5 MHz to 24 MHz		
		min. max.		min.	max.	

External Data Memory Characteristics

ns
ns
ns
90 ns
ns
20 ns
133 ns
155 ns
50 ns
ns
25 ns
ns
ns
ns
ns

External Clock Drive

Parameter	Symb	Symbol		Limit Values				
			۷ = Freq.					
			min.	max.				
Oscillator period	t _{CLCL}	SR	41.7	294	ns			
High time	t _{CHCX}	SR	12	$t_{CLCL} - t_{CLCX}$	ns			
Low time	t _{CLCX}	SR	12	$t_{\rm CLCL} - t_{\rm CHCX}$	ns			
Rise time	t _{CLCH}	SR	-	12	ns			
Fall time	t _{CHCL}	SR	-	12	ns			

AC Characteristics for C504-L40 / C504-2R40 / C504-2E40

(Operating Conditions apply)¹⁾

 $(C_{\rm L} \text{ for Port 0, ALE and PSEN outputs} = 100 \text{ pF}; C_{\rm L} \text{ for all other outputs} = 80 \text{ pF})$

Parameter	Symbol	Limit Values				
		40-MHzVariable Clockclock1/t_{CLCL} = 3.5 MHz t40 MHz		= 3.5 MHz to		
		min.	max.	min.	max.	

Program Memory Characteristics

,							
ALE pulse width	t _{LHLL}	CC	35	-	2 <i>t</i> _{CLCL} – 15	_	ns
Address setup to ALE	t _{AVLL}	CC	10	_	$t_{\rm CLCL} - 15$	_	ns
Address hold after ALE	t _{LLAX}	CC	10	-	$t_{\rm CLCL} - 15$	_	ns
ALE low to valid instr in	t _{LLIV}	SR	-	55	_	$4t_{CLCL} - 45$	ns
ALE to PSEN	t _{LLPL}	CC	10	-	$t_{\rm CLCL} - 15$	-	ns
PSEN pulse width	t _{PLPH}	CC	60	-	$3t_{CLCL} - 15$	_	ns
PSEN to valid instr in	t _{PLIV}	SR	-	25	-	$3t_{CLCL} - 50$	ns
Input instruction hold after PSEN	t _{PXIX}	SR		_	0	_	ns
Input instruction float after PSEN	$t_{PXIZ}^{2)}$	SR	_	20	-	$t_{\rm CLCL} - 5$	ns
Address valid after PSEN	$t_{PXAV}^{2)}$	CC	20	_	$t_{\rm CLCL} - 5$	_	ns
Address to valid instr in	<i>t</i> _{AVIV}	SR	_	65	_	$5t_{CLCL} - 60$	ns
Address float to PSEN	t _{AZPL}	CC	- 5	_	- 5	_	ns

Notes:

1) SAK-C504 is not specified for 40 MHz operation.

2) Interfacing the C504 to devices with float times up to 25 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

AC Characteristics for C504-L40 / C504-2R40 / C504-2E40 (cont'd)

Parameter	Symbol		Limit Values				
		40-MHz clock		Variable Clock 1/t _{CLCL} = 3.5 MHz to 40 MHz			
		min.	max.	min.	max.		

External Data Memory Characteristics

RD pulse width	t _{RLRH}	CC	120	-	$6t_{CLCL} - 30$	_	ns
WR pulse width	t _{WLWH}	CC	120	_	$6t_{CLCL} - 30$	_	ns
Address hold after ALE	$t_{\rm LLAX2}$	CC	35	-	$2t_{CLCL} - 15$	_	ns
RD to valid data in	t _{RLDV}	SR	—	75	-	$5t_{CLCL} - 50$	ns
Data hold after RD	t _{RHDX}	SR	0		0	_	ns
Data float after RD	t _{RHDZ}	SR	—	38	-	2 <i>t</i> _{CLCL} – 12	ns
ALE to valid data in	t _{LLDV}	SR	—	150	-	$8t_{CLCL} - 50$	ns
Address to valid data in	t _{AVDV}	SR	—	150	-	9 <i>t</i> _{CLCL} – 75	ns
ALE to WR or RD	t _{LLWL}	CC	60	90	$3t_{CLCL} - 15$	$3t_{CLCL} + 15$	ns
Address valid to \overline{WR}	t _{AVWL}	CC	70	-	$4t_{CLCL} - 30$	_	ns
WR or RD high to ALE high	t _{WHLH}	CC	10	40	$t_{\rm CLCL} - 15$	<i>t</i> _{CLCL} + 15	ns
Data valid to WR transition	t _{QVWX}	CC	5	-	$t_{\rm CLCL} - 20$	_	ns
Data setup before WR	t _{QVWH}	CC	125	-	$7t_{CLCL} - 50$	_	ns
Data hold after WR	t _{WHQX}	CC	5	_	$t_{\rm CLCL} - 20$	-	ns
Address float after RD	t _{RLAZ}	CC	_	0	_	0	ns
Address to valid data in ALE to WR or RD Address valid to WR WR or RD high to ALE high Data valid to WR transition Data setup before WR Data hold after WR	$\frac{t_{AVDV}}{t_{LLWL}}$ $\frac{t_{AVWL}}{t_{AVWL}}$ $\frac{t_{WHLH}}{t_{QVWX}}$ $\frac{t_{QVWH}}{t_{WHQX}}$	SR CC CC CC CC CC CC	- 60 70 10 5 125 5	150 90 	$4t_{CLCL} - 30$ $t_{CLCL} - 15$ $t_{CLCL} - 20$ $7t_{CLCL} - 50$	$9t_{CLCL} - 75$ $3t_{CLCL} + 15$ - $t_{CLCL} + 15$ - - - -	

External Clock Drive

Parameter	Symb	ol		Unit	
				/ariable Clock = 3.5 MHz to 40 MHz	
			min.	max.	
Oscillator period	t _{CLCL}	SR	25	294	ns
High time	t _{CHCX}	SR	10	$t_{\rm CLCL} - t_{\rm CLCX}$	ns
Low time	t _{CLCX}	SR	10	$t_{\rm CLCL} - t_{\rm CHCX}$	ns
Rise time	t _{CLCH}	SR	-	10	ns
Fall time	t _{CHCL}	SR	_	10	ns

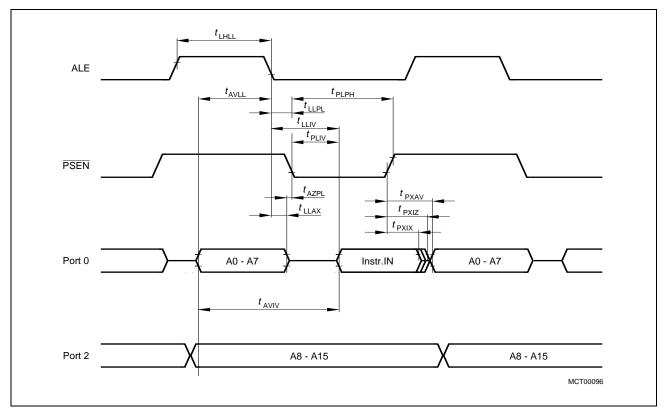


Figure 24Program Memory Read Cycle

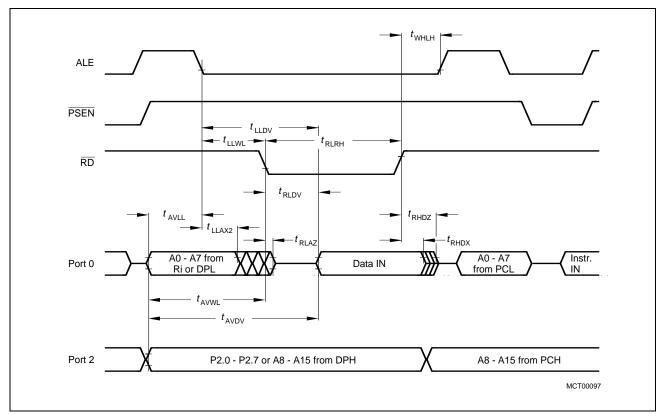


Figure 25 Data Memory Read Cycle

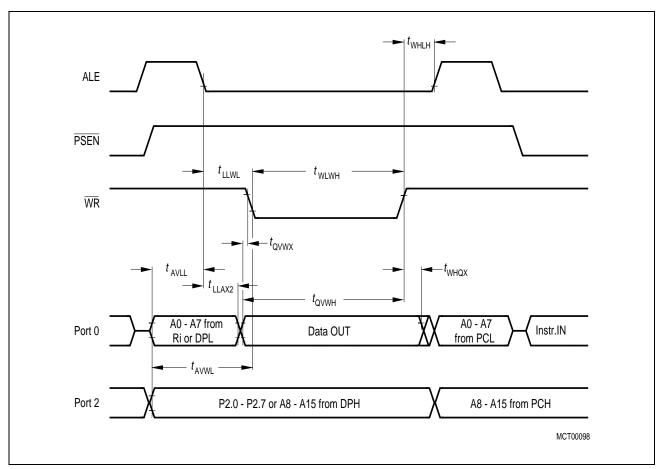
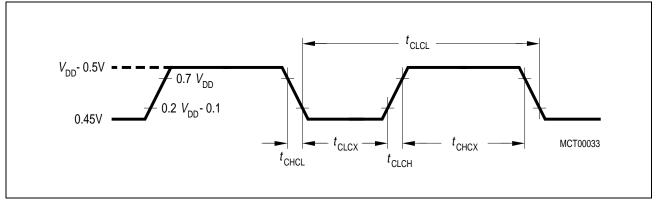



Figure 26 Data Memory Write Cycle

AC Characteristics of Programming Mode

 $(V_{\text{DD}} = 5 \text{ V} \pm 10\%; V_{\text{PP}} = 11.5 \text{ V} \pm 5 \%; T_{\text{A}} = 25 \text{ }^{\circ}\text{C} \pm 10 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Limit Val	Unit	
		min.	max.	
PALE pulse width	t _{PAW}	35	_	ns
PMSEL setup to PALE rising edge	t _{PMS}	10	-	ns
Address setup to PALE, PROG, or PRD falling edge	t _{PAS}	10	-	ns
Address hold after PALE, PROG, or PRD falling edge	t _{PAH}	10	-	ns
Address, data setup to PROG or PRD	t _{PCS}	100	-	ns
Address, data hold after PROG or PRD	t _{PCH}	0	-	ns
PMSEL setup to PROG or PRD	t _{PMS}	10	-	ns
PMSEL hold after PROG or PRD	t _{PMH}	10	-	ns
PROG pulse width	t _{PWW}	100	-	μs
PRD pulse width	t _{PRW}	100	—	ns
Address to valid data out	t _{PAD}	-	75	ns
PRD to valid data out	t _{PRD}	-	20	ns
Data hold after PRD	t _{PDH}	0	-	ns
Data float after PRD	t _{PDF}	-	20	ns
PROG high between two consecutive PROG low pulses	t _{PWH1}	1	-	μs
PRD high between two consecutive PRD low pulses	t _{PWH2}	100	-	ns
XTAL clock period	t _{CLKP}	83.3	285.7	ns

Note:

 V_{PP} = 11.5 V ± 5% is valid for devices with version byte 2 = 02_H or higher. Devices with version byte 2 = 01_H must be programmed with V_{PP} = 12 V ± 5%.

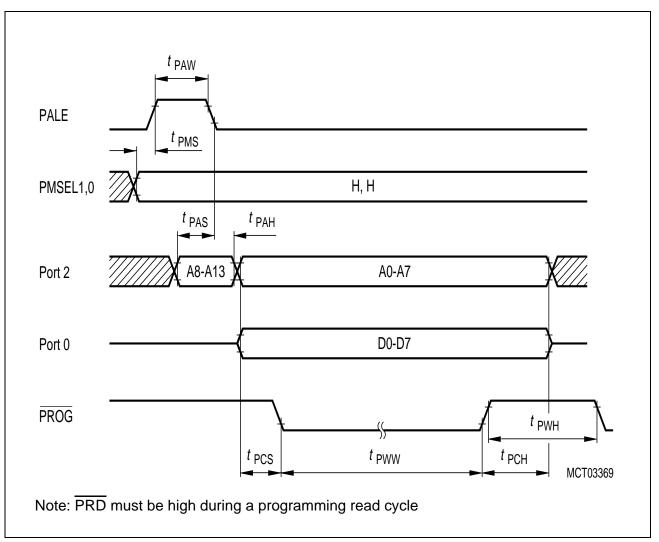
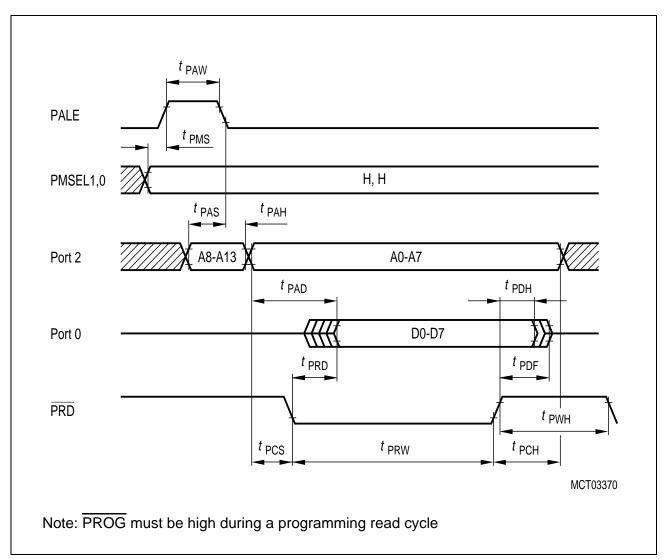
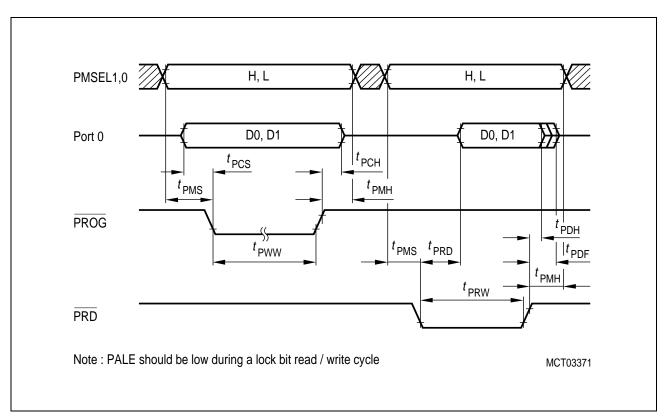
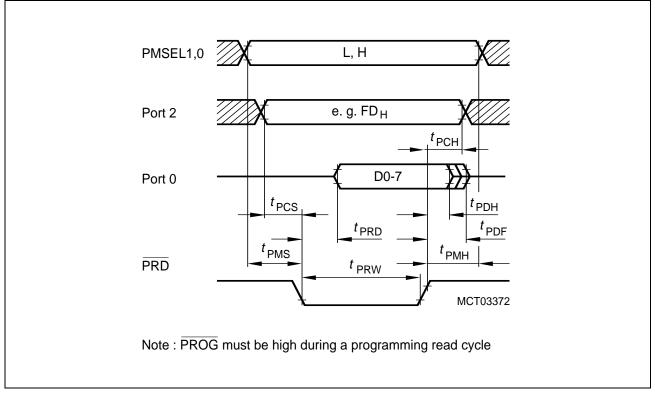


Figure 28 Programming Code Byte - Write Cycle Timing

C504


Figure 29 Verify Code Byte - Read Cycle Timing

C504

Figure 30 Lock Bit Access Timing

Figure 31 Version Byte Read Timing

ROM/OTP Verification Characteristics for C504-2R / C504-2E ROM Verification Mode 1 (C504-2R only)

Parameter	Symbol	Limit	Values	Unit
		min.	max.	
Address to valid data	<i>t</i> _{AVQV}	_	10 t _{CLCL}	ns

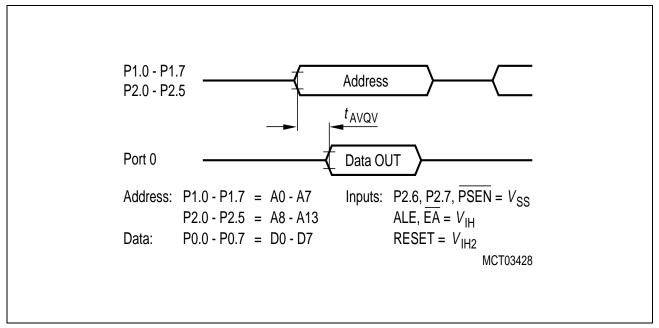


Figure 32 ROM Verification Mode 1

ROM/OTP Verification Mode 2

Parameter	Symbol		Unit		
		min.	typ	max.	
ALE pulse width	t _{AWD}	-	2 t _{CLCL}	-	ns
ALE period	t _{ACY}	_	12 t _{CLCL}	-	ns
Data valid after ALE	t _{DVA}	_	_	4 t _{CLCL}	ns
Data stable after ALE	t _{DSA}	8 t _{CLCL}	_	-	ns
P3.5 setup to ALE low	t _{AS}	_	t _{CLCL}	-	ns
Oscillator frequency	1/t _{CLCL}	4	-	6	MHz

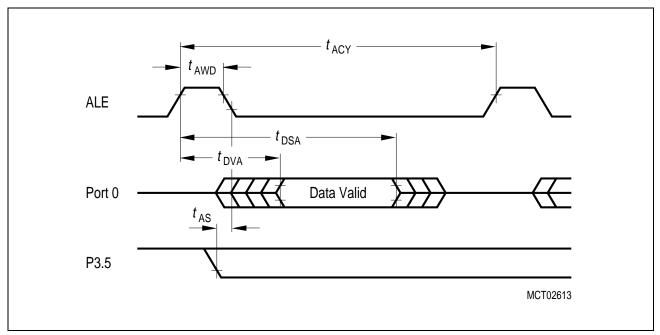


Figure 33 ROM Verification Mode 2

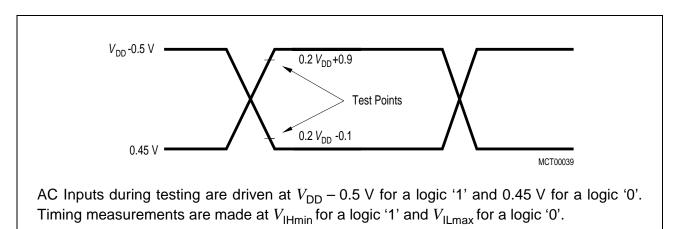
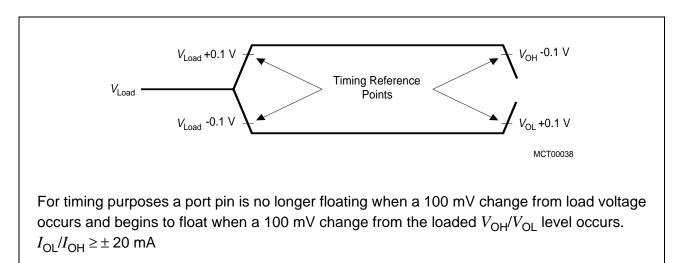
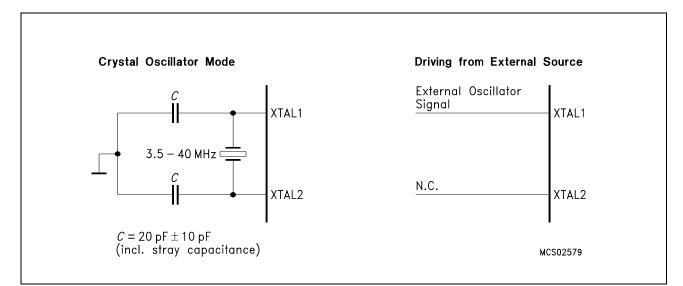
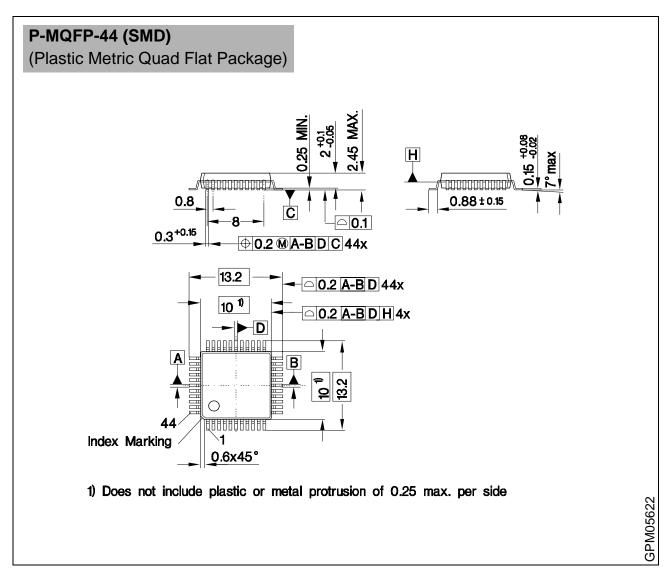


Figure 34 AC Testing: Input, Output Waveforms


Figure 35 AC Testing: Float Waveforms

Package Information

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com