

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 1 of 48

C Compilers • Real-Time OS • Simulators • Education • Evaluation Boards

Implementing µVision2 DLL’s for Application Note 154
Advanced Generic Simulator Interface Rev. 2

Contents
Introduction... 2
How to use a Sample Peripheral DLL... 3
Implementing own peripheral DLLs: Required Steps ... 6
How simulation basically works... 7
Address representation... 8
AGSI Function Description.. 9

AgsiEntry... 10
AgsiDefineSFR.. 12
AgsiDefineVTR ... 13
AgsiDeclareInterrupt ... 14
AgsiSetWatchOnSFR ... 16
AgsiSetWatchOnVTR .. 17
AgsiSetWatchOnMemory .. 18
AgsiCreateTimer... 19
AgsiSetTimer... 20
AgsiDefineMenuItem.. 21
AgsiWriteSFR ... 23
AgsiReadSFR .. 24
AgsiSetSFRReadValue ... 25
AgsiWriteVTR .. 26
AgsiReadVTR ... 27
AgsiWriteMemory .. 28
AgsiReadMemory ... 29
AgsiGetStates .. 30
AgsiGetProgramCounter ... 31
AgsiIsInInterrupt.. 32
AgsiIsSleeping ... 33
AgsiStopSimulator.. 34
AgsiTriggerReset .. 35
AgsiUpdateWindows .. 36
AgsiHandleFocus .. 37
AgsiGetExternalClockRate.. 38
AgsiGetInternalClockRate... 39
AgsiGetClockFactor ... 40
AgsiMessage .. 41
AgsiSetTargetKey... 42
AgsiGetTargetKey .. 43
AgsiExecuteCommand ... 44
AgsiGetLastMemoryAddress... 45
AgsiGetSymbolByName ... 46
AgsiGetSymbolByValue ... 47

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 2 of 48

Introduction

The µVision2 Debugger supports a simulator interface for implementing user-defined peripherals. This
interface is called Advanced Generic Simulator Interface (AGSI). The AGSI introduces a flexible and
easy way for adding new user defined peripherals directly to µVision2. It provides functions that are
necessary to simulate the peripheral’s behavior as well as functions to display peripheral dialogs.

To ease the development of a user-defined peripheral, the AGSI and a configuration framework is
provided in two example projects. Only µVision version 2.21 or later supports all functions that are
described in this document.

SPeriDLL
SPeriDLL, is a synonym for ‘Sample Peripheral DLL’. It is a ready to run peripheral DLL which
implements a ‘A/D Converter from Analog Devices ADuC812’ as a sample peripheral. It uses most of
the AGSI functions to implement this peripheral. The project consists of a MS Visual-C++ (6.0) project
file and the following source files:

 AGSI.h: prototypes for the AGSI functions (do not modify !)
 SPeriDLL.h: main header file with various prototypes and definitions
 SPeriDLL.cpp: main file (created by AppWizard) contains setup code and simulation
 PeriDialog.h: header file (created by Class Wizard) for a modeless peripheral dialog
 PeriDialog.cpp: implementation file for a modeless peripheral dialog
Also a simple µVision2 test project ‘Single A/D conversion with ADuC812’ is included in the file
S812ADC.zip which shows how to include and test the implemented peripheral.

STimerDLL
STimerDLL, is a synonym for ‘Sample Timer DLL’. It is a ready to run peripheral DLL which
implements a ‘Timer 3’ as a sample peripheral. As regards functionality, ‘Timer 3’ is identical to a
standard 8051 Timer 1 but has different SFR addresses so that it can be loaded in addition to a ‘Timer 1’.
It uses most of the AGSI functions to implement this peripheral. The project consists of a MS Visual-
C++ (6.0) project file and the following source files:

 AGSI.h: prototypes for the AGSI functions (do not modify !)
 Common.h: header file with various prototypes and definitions
 Common.cpp: common support functions for AGSI and dialog functions
 STimerDLL.h: header file for STimerDLL class
 STimerDLL.cpp: main file provides peripheral setup code and simulation
 PeriDialog.h: header file (created by Class Wizard) for a modeless peripheral dialog
 PeriDialog.cpp: implementation file for a modeless peripheral dialog
Also a simple µVision2 test project is included in the file Timer3.zip which shows how to include and
test the implemented peripheral.

In order to develop a peripheral, knowledge about C/C++ programming and the MS Visual-C++ 6.00
Programming Environment is required.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 3 of 48

How to use a Sample Peripheral DLL

In order to use one of the Sample Peripheral DLL’s, you must perform the steps below. The following
steps are described for the SPeriDLL but the same applies for the STimerDLL:

• Install µVision2 and the C51 Compiler on your PC.

• Create a folder such as D:\Src32\SPeriDLL\

• Unzip the file SPeriDLL.zip into the folder. Make sure that the ‘use folder names’
checkbox is checked since SPeriDLL uses some subfolders.

• Create a folder such as C:\Keil\C51\Examples\S812ADC\

• Unzip the file S812ADC.zip into the folder.

• Start Visual-C, select the ‘SPeriDLL.dsw’ project file.

• Select ‘Project – Settings’. Click at the ‘Debug’ tab. Browse for the ‘Executable for Debug
session’. You need to select the file Uv2.Exe. It is normally in C:\Keil\Uv2 but this depends
on where you have installed µVision2.

• Then click at the ‘Custom Build’ tab and write in the ‘Commands’ window the command
‘copy $(InputPath) C:\KEIL\C51\BIN\$(InputName).dll’ and write in the ‘Outputs’ window
the output file ‘C:\KEIL\C51\BIN\$(InputName).dll’. This step is required to automatically
copy the created DLL after building it in the BIN subfolder of µVision2 which is normally
C:\KEIL\C51\BIN but depends on where you have installed µVision2. If everything is right,
then the dialog should look like this:

• After that, close the dialog.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 4 of 48

• Select ‘Build – Set active configuration’, choose the SPeriDLL Win32 Debug configuration.

• Select ‘Build – Rebuild All’ to create the DLL.

• Run µVision2 by pressing the F5 key. Select ‘Project – Open Project’, the Select Project
dialog comes up. Select the ‘S812ADC.uv2’ project. It can be found in the folder that you
have created and copied the project files into (normally C:\Keil\C51\Examples\S812ADC).
Select ‘Rebuild all target files’ to build the project.

• Select ‘Options for Target – Debug’. Enable loading of the SPeriDLL peripheral DLL by
simply adding the parameter ‘-dSPeriDLL’ to the parameter list of the ‘Dialog DLL’. The
parameter format for peripheral DLL’s is ‘-dDLLName’ (DLL name without extension).
Make sure that the ‘Use Simulator’ radio button is checked. If everything is right, then the
dialog should look like this:

• Close the dialog.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 5 of 48

• Select ‘Debug – Start/Stop Debug Session’. This will start the µVision2 Debugger. It
initializes and loads also our SPeriDLL.dll. In the ‘Peripherals’ menu a new item should be
present with the label ‘A/D Converter’. Click on this item to open the peripheral dialog
which looks like this:

• Now you can single step through the code of the ‘Single A/D conversion with ADuC812’
sample and observe the behavior of the ‘A/D Converter’ peripheral and also other peripherals
like ‘Port 0’ , ‘Port 2’, ‘Port 3’ and ‘Interrupt’.

Note that this sample program demonstrates functionality of only a small part of the A/D Converter.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 6 of 48

Implementing own peripheral DLLs: Required Steps

In order to develop a peripheral DLL you should perform the following steps:

• Start MS Visual-C++ and create a new project ‘MFC AppWizard (dll)’.

• Add prototypes and definitions for the AGSI and SFR’s (Special Functions Registers) and
VTR’s (Virtual Registers) definitions to the main header file (*.h).

• Write code for the peripheral initialization into the main file (*.cpp). This includes AGSI
setup (GetFunctionPointers), declaration of peripheral menu entries and associated dialogs
(DefineAllMenuEntries), declaration of SFR’s (DefineAllSFR), VTR’s (DefineAllVTREG),
Watches (DefineAllWatches) and Interrupts (DefineAllInterrupts). Write also code for
peripheral reset - SFR’s reset values (ResetPripheral). All this functions are called from the
function AgsiEntry() which must be exported by this peripheral DLL.

• Write functions for simulation of the peripheral into the main file (this functions are
triggered by the defined watches). Include also prototypes of this functions.

• Create a peripheral dialog with the Resource Editor (if the dialog is required) and the
associated header file (*.h) and implementation file (*.cpp) using the ‘MFC ClassWizard’.
Don’t forget to set the ‘Visible’ property of the dialog and include the default buttons ‘OK’
and ‘Cancel’ and make them invisible (required for the behavior of the ESC and Enter keys).
Change the default constructor for the dialog and add functions PeriDisp() – displays dialog,
PeriUpdate() – updates display contents which calls function Update() and PeriKill() – closes
the dialog. Add also a menu definition (AGSIMENU) and a dialog definition (AGSIDLGD).

• Write the code for updating the display contents into the Update() function in the dialog
implementation file. This function is called automatically when an update is requested and is
used to reflect the current state of the peripheral.

• Add functions for dialog control item’s messages by using ‘MFC ClassWizard’. Most
frequently used messages are: ON_BN_CLICKED for Buttons, ON_EN_KILLFOCUS for
Edit Boxes, ON_CBN_SELCHANGE for Combo Boxes …
Include also functions for the two invisible buttons ‘OK’ and ‘Cancel’.

• Select ‘Project – Settings’. Click at the ‘Debug’ tab. Browse for the ‘Executable for Debug
session’ and select the file Uv2.Exe. It is normally in C:\Keil\Uv2 but this depends on where
you have installed µVision2.

• Rebuild your peripheral DLL. Then copy the DLL file to the BIN subfolder of µVision2
which is normally C:\KEIL\C51\BIN but depends on where you have installed µVision2 or
use the ‘Custom Build’ within MS Visual-C++ and write the command that automatically
copies the DLL after rebuild (see previous description in the ‘Sample Peripheral DLL’).

• Test your peripheral DLL by running µVision2 (press the F5 key). Select a test project and
enable loading of the implemented peripheral DLL by simply adding the parameter
‘-dDLLName’ (DLL name without extension) to the parameter list of the peripheral DLL
(see previous description in the ‘Sample Peripheral DLL’).

• If the implemented peripheral is running, switch into Release Mode and rebuild it. Then test
the peripheral DLL again (don’t forget to copy the ‘Release DLL’ file to the BIN subfolder
of µVision2).

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 7 of 48

How simulation basically works

If every simulated peripheral would be updated with every simulated CPU instruction, the performance
of the simulator would be extremely low. That’s why µVision simulator uses a event driven simulation
instead. Events (also called watches) are read or write accesses to special function registers (SFR),
virtual register (VTR) or memory areas and when a software timer expires. The following two examples
explain this in detail:

Analog Digital Converter (see SPeriDLL):
Let’s assume that an A/D converter has configuration register (SFR’s ADCCONx), data register (SFR’s
ADCDATAx), 8 analog inputs (VTR’s AIN0-7) and one external pin (VTR CONVST) to start a
conversion. The A/D converter does nothing until it is started so no functions are called to simulate it
and no simulation time is consumed at this time. In order to ‘see’ when the A/D converter is configured
and started, so called access watches (AgsiSetWatchOnSFR and AgsiSetWatchOnVTR) need to be set on
the configuration register and on the external start pin. This is done in the function ‘DefineAllWatches’.
Whenever a new value is written into the ADCCONx register or into the external start pin, the function
‘AdcConv’ is called. This function has to check the configuration, reference voltages and the analog
inputs in order to calculate the digital value. The digital result cannot be written into the data register at
this time. A real A/D converter needs some time to sample and convert an analog voltage. In order to
simulate this behavior, a software timer is set (AgsiSetTimer) which calls the function ‘AdcCompleted’
after the specified number of states. This function writes the digital value into the data register, clears
the busy flag and sets the interrupt request bit.

16 Bit Timer (see STimerDLL):

Even a timer does not need to update (recalculate) its values with every simulated instruction. Typically,
the timer values need to be updated when the configuration changes (start/stop, prescaler value) and
when the actual timer value is read. Therefore, a write access watch must be set on the configuration
register and read access watches must be set on the timer register. The timer calculation function stores
the time (states) in a static variable whenever it is called. With the time difference (actual states – last
states) the actual timer value can be calculated. With this method, the timer values can be calculated at
any time with a minimum of calculation overhead. Only the interrupt on a timer overflow cannot be
handled that way. With an additional software timer (AgsiSetTimer) set to this event, the timer is
recalculated with every overflow. When a overflow is detected, the interrupt request flag is set and the
timer is reloaded with 0 or a specific reload value.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 8 of 48

Address representation

Depending on the microcontoller family, µVision2 maps the different memory areas (XDATA / DATA /
CODE) into one linear address range. These different memory areas are represented with the following
values in the most significant byte of a 32 bit address:

80166 Microcontoller: This microcontoller has a 16 Mbyte linear address space. The valid address
range therefore is from 0 to 0x00FFFFFF. No different memory types are needed.

8051 Microcontoller:

Define Memory type Address Range

amXDATA XDATA 0x0000 – 0xFFFF

amPDATA PDATA 0x0000 – 0x00FF (one page of XDATA)

amDATA DATA 0x0000 – 0x00FF

amIDATA IDATA 0x0000 – 0x00FF (0x00 – 0x7F = DATA)

amCODE CODE 0x0000 – 0xFFFF

amBANK0 Bank 0 0x0000 – 0xFFFF

amBANK0 + n Bank n 0x0000 – 0xFFFF

amBANK31 Bank 31 0x0000 – 0xFFFF

80251 Microcontoller: Following types can be used in addition to the memory types of the 8051 Family

Define Memory type Address Range

amEDATA EDATA 0x0000 – 0xFFFF

amECODE ECODE 0x0000 – 0xFFFFFF

amHDATA HDATA 0x0000 – 0xFFFFFF

amHCONS HCONST 0x0000 – 0xFFFFFF

amCONST CONST 0x0000 – 0xFFFF

Example:
BYTE buffer[10];
AgsiReadMemory(0x1000|(amCODE<<24),10,buffer);// read 10 bytes to (CODE) address 0x1000

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 9 of 48

AGSI Function Description

AgsiEntry is the only function of a peripheral DLL that is called directly from the µVision simulator. All
other functions described below are in the µVision simulator and can be called from the peripheral DLL.

Functions to define SFR’s, VTR’s, interrupts, timer, menus, dialogs and access watches. These functions
can only be called during the initialization.

AgsiDefineSFR AgsiDefineVTR

AgsiDeclareInterrupt AgsiSetWatchOnSFR

AgsiSetWatchOnVTR AgsiSetWatchOnMemory

AgsiCreateTimer AgsiDefineMenuItem

Functions to read and write memory, SFR’s and VTR’s.

AgsiWriteSFR AgsiReadSFR

AgsiWriteVTR AgsiReadVTR

AgsiWriteMemory AgsiReadMemory

Functions to retrieve simulator status information.

AgsiGetStates AgsiGetProgramCounter

AgsiIsInInterrupt AgsiIsSleeping

AgsiGetExternalClockRate AgsiGetInternalClockRate

AgsiGetClockFactor AgsiGetLastMemoryAddress

Functions to control the simulator.

AgsiSetTimer AgsiSetSFRReadValue

AgsiStopSimulator AgsiTriggerReset

AgsiUpdateWindows AgsiHandleFocus

AgsiMessage AgsiExecuteCommand

Functions to store and retrieve configuration information.

AgsiSetTargetKey AgsiGetTargetKey

Functions to retrieve symbol values or symbol names.

AgsiGetSymbolByName AgsiGetSymbolByValue

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 10 of 48

AgsiEntry

Summary:
extern "C" DWORD AGSIEXPORT AgsiEntry (DWORD nCode, void *vp)

Parameter:

nCode Function selector. All possible values are listed below.

vp Pointer to various objects depending on nCode. In order to use this pointer,
it must be casted to the required datatype.

Return Value:

The function should return TRUE(1) if completed successfully or FALSE(0) if an error occurred.

Description:

AgsiEntry is the only function of a peripheral DLL that has to be exported. It is called from
µVision when a debug session is started to initialize the peripheral simulation as well as during the
debugging session to notify events. The meaning of vp depends on the value of nCode.
AgsiEntry can be called with the following nCode values:

Value of nCode Value of vp Function

AGSI_CHECK 8051 or 80166 Check CPU Type

AGSI_INIT Pointer to AGSICONFIG Initialize DLL

AGSI_TERMINATE Not used Terminate

AGSI_RESET Not used Reset

AGSI_PREPLL Not used CPU clock is about to be changed

AGSI_POSTPLL Not used CPU clock was changed

AGSI_CHECK

The first call to AgsiEntry is done with nCode=AGSI_CHECK. The pointer vp points to a
DWORD which contains either the value 8051 or 80166 depending on the microcontroller family
that is selected in the current project. This call checks if the DLL can be used for the specified
microcontroller family. The function should return TRUE(1) if the DLL supports this
microcontoller family or FALSE(0) if not.

AGSI_INIT

The second call to AgsiEntry is done with nCode=AGSI_INIT. The pointer vp points to the
structure AGSICONFIG which contains information about the project and the parameters for this
DLL. This information can be used to configure the peripheral DLL. Additional parameters
(format: –option) for the DLL can be entered in the µVision dialog ‘Options for Target -> Debug -
> Dialog DLL Parameter’. The DLL can analyze the ‘m_pszConfiguration’ string to extract the

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 11 of 48

information. The ‘m_pszProjectPath’ can be used to store log files or additional configuration files
for the current project.
typedef struct {
HINSTANCE m_hInstance; // Instance handle to retrieve the function addresses
const char* m_pszProjectPath; // Path to application e.g. C:\KEIL\C51\EXAMPLES\HELLO
const char* m_pszDevice; // Simulated Device e.g. 52. This string is extracted

// out of the -p option.
const char* m_pszConfiguration; // Complete dialog DLL options e.g. -p52 -dmydll ...
const char* m_pszAppFile; // Name of loaded OMF file including path e.g.

// C:\KEIL\C51\EXAMPLES\HELLO\HELLO
} AGSICONFIG;

When AgsiEntry is called with AGSI_INIT, all special function register (SFR), virtual register
(VTR), interrupts, watchpoints and dialogs that need to be simulated must be defined. The
function should return FALSE(0) if an error occurs or TRUE(1) if the function has been executed
successfully.

AGSI_TERMINATE

AgsiEntry is called with nCode=AGSI_TERMINATE when the µVision debugger is closed.
The pointer vp is not used in this case. When files have been opened during initialization they
must be closed and if memory has been allocated, it must be freed.

AGSI_RESET

AgsiEntry is called with nCode=AGSI_RESET when the simulated CPU is reset. All
peripherals (SFR’s) must be set to their reset state. There are several situations where a CPU reset
is executed:
- When the simulator is started (after AGSI_INIT).
- After an application is loaded.
- When RESET is entered in the command line or when the reset button is pressed in the toolbar.
- When a watchdog timer overflow occurs

The pointer vp is not used in this case.

AGSI_PREPLL, AGSI_POSTPLL

AgsiEntry is called with nCode=AGSI_PREPLL or AGSI_POSTPLL before and after the
CPU clock frequency changes. Some CPU’s have a clock prescaler that can be reprogrammed to
save power. In case a peripheral is not connected to the same clock as the CPU, the values for
AgsiSetTimer probably need to be recalculated when the CPU clock is modified. This function
call notifies a peripheral before and after the CPU clock frequency has changed so that the timer
values can be corrected for the new clock. The pointer vp is not used in this case.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 12 of 48

AgsiDefineSFR

Summary:
BOOL AgsiDefineSFR(const char* pszSfrName, AGSIADDR dwAddress,

AGSITYPE eType, BYTE bBitPos);

Parameter:

pszSfrName Pointer to name of the SFR

dwAddress Address of the SFR. Following address ranges are possible:

8051/251: 0x80 – 0xFF
8051Mx: 0x80 – 0xFF and 0x180 – 0x1FF
80166: 0xF000 – 0xF1FE and 0xFE00 – 0xFFFE (even address)

eType Type of the SFR.

8051: AGSIBYTE or AGSIBIT
80166: AGSIWORD or AGSIBIT
With AGSIBIT, dwAddress must point to a bitaddressable area:
8051: 0x80, 0x88, … , 0xF0, 0xF8 every 8th byte
80251: 0x80 - 0xFF every byte
8051Mx: 0x80 - 0xF8 and 0x180 – 0x1F8 every 8th byte
80166: 0xF100 – 0xF1FE and 0xFF00 – 0xFFFE (even address)

bBitPos Bit position within SFR (only for eType=AGSIBIT).

8051/251/Mx: 0 – 7
80166: 0 – 15

Return Value:

TRUE if successful, FALSE in case of wrong address or too many definitions (at least 300 for all
loaded DLL’s).

Description:

This function is used to define a SFR (Special Function Register) or a SFR bit. These definitions
can be listed in the symbol window and can be used in the watch window and command line.

Note:

This function may only be called during the initialization process.

Example:
AgsiDefineSFR("IE", 0xA8, AGSIBYTE, 0); // 8051: IE
AgsiDefineSFR("EA", 0xA8, AGSIBIT, 7); // 8051: EA bit in IE
AgsiDefineSFR("PSW", 0xFF10, AGSIWORD, 0); // 80166: PSW
AgsiDefineSFR("IEN", 0xFF10, AGSIBIT, 11); // 80166: IEN bit in PSW

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 13 of 48

AgsiDefineVTR

Summary:
AGSIVTR AgsiDefineVTR(const char* pszVtrName, AGSITYPE eType,

DWORD dwValue);

Parameter:

pszVtrName Name of the VTR

eType Type of the VTR (AGSIVTRCHAR, AGSIVTRWORD,

AGSIVTRLONG or AGSIVTRFLOAT)

dwValue Initial Value of the VTR. Initializing float values is a little difficult since

dwValue is defined as DWORD. In this case, the float value can be
converted to a DWORD using a union.

Return Value:

VTR handle if successful otherwise NULL.

Description:

This function is used to declare a VTR (Virtual Register). VTR’s are used to display or to set
values that are usually set by hardware. With this function, new VTR’s can be defined or the
handle of already defined VTR’s can be retrieved.

Note:

This function may only be called during the initialization process.

Example:
hXTAL = AgsiDefineVTR("XTAL", AGSIVTRLONG, 0x00B71B00); // 12MHz
hVREF = AgsiDefineVTR("VREF", AGSIVTRFLOAT, 0x40200000); // 2.5V
hVREF = AgsiDefineVTR("MYPORT", AGSIVTRCHAR, 0x000000FF); // all pins high

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 14 of 48

AgsiDeclareInterrupt

Summary:
BOOL AgsiDeclareInterrupt(AGSIINTERRUPT *pInterrupt);

Parameter:

PInterrupt Pointer to an AGSIINTERRUPT structure (see below).

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to define an interrupt source of an on-chip peripheral. All the information
about this interrupt source is passed to the function with a structure. It defines the interrupt vector
address as well as all request, enable and priority flags. This information automatically adds
another line in the Interrupt Dialog. The structure is different for every microcontroller family and
is described in the following AGSIINTERRUPT structure:
// 8051/251/8051Mx
typedef struct {

AGSIADDR vec; // interrupt vector address
char *mess; // interrupt name (will be shown in interrupt dialog)

// The mode bit is only shown in the interrupt dialog.
// It has no influence on interrupt processing.

AGSIADDR msfr; // interrupt mode sfr.
WORD mmask; // interrupt mode bit mask (only one bit may be set)
const char *mname; // name of interrupt mode bit
AGSIADDR rsfr; // interrupt request sfr
WORD rmask; // interrupt request bit mask (only one bit may be set)
const char *rname; // name of interrupt request bit
AGSIADDR esfr; // interrupt enable sfr
WORD emask; // interrupt enable bit mask (only one bit may be set)
const char *ename; // name of interrupt enable bit
AGSIADDR p0sfr; // interrupt priority 0 sfr
WORD p0mask; // interrupt priority 0 bit mask (only one bit may be set)
const char *pname; // name of interrupt priority bit
AGSIADDR p1sfr; // interrupt priority 1 sfr. =0 if CPU only supports 2 levels
WORD p1mask; // interrupt priority 1 bit mask (only one bit may be set)
WORD pwl; // priority within level (1 – lowest priority)
WORD auto_reset; // reset interrupt request flag on interrupt entry

} AGSIINTERRUPT;

// 80166
typedef struct {

AGSIADDR vec; // interrupt vector address (must be a even address)
char *mess; // interrupt name (will be shown in interrupt dialog)
AGSIADDR sfr; // interrupt control sfr which contains ILVL, GLVL, IR and IE

} AGSIINTERRUPT;

Note:

This function may only be called during the initialization process.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 15 of 48

Example:
// 8051/251/8051Mx
#define TCON 0x88
#define IE 0xA8
#define IP 0xB8
#define IPH 0xB7

AGSIINTERRUPT ExtInt0 = { // External Interrupt 0
0x0003, "P3.2/Int0", TCON, 0x01, "IT0", TCON, 0x02, "IE0", IE, 0x01, "EX0", IP,
0x01, "Pri", IPH, 0x01, 8, 1
};
AGSIINTERRUPT Timer0Int = { // Timer 0 Interrupt
0x000B, "Timer 0", 0, 0, "", TCON, 0x20, "TF0", IE, 0x02, "ET0", IP,
0x02, "Pri", IPH, 0x02, 6, 1
};

AgsiDeclareInterrupt(&Timer0Int);
AgsiDeclareInterrupt(&ExtInt0);

// 80166
#define S0TIC 0xFF6C

AGSIINTERRUPT SerTransmitInt = { // Serial Transmit Interrupt
0x00A8, "S0TINT", S0TIC

}
AgsiDeclareInterrupt(&SerTransmitInt);

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 16 of 48

AgsiSetWatchOnSFR

Summary:
BOOL AgsiSetWatchOnSFR(AGSIADDR SFRAddress, AGSICALLBACK

pfnReadWrite,AGSIACCESS eAccess);

Parameter:

SFRAddress Address of the SFR

pfnReadWrite Pointer to a function that is called on SFR access. The function must have

no parameter and no return value (void function(void)).

eAccess Access type (AGSIREAD, AGSIWRITE, AGSIREADWRITE)

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to set a watch on SFR access. Whenever the specified SFR is accessed, the
specified function is called.

Note:

This function may only be called during the initialization process.

Example:
#define TCON 0x88
#define TL1 0x8B
#define TH1 0x8D

static void timer1(void) {
// watch function implementation
}

AgsiSetWatchOnSFR(TH1, timer1, AGSIREADWRITE); //Call ‘timer1’ when TH1 is written or read
AgsiSetWatchOnSFR(TL1, timer1, AGSIREADWRITE); //Call ‘timer1’ when TL1 is written or read
AgsiSetWatchOnSFR(TCON, timer1, AGSIWRITE); //Call ‘timer1’ when TCON is written

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 17 of 48

AgsiSetWatchOnVTR

Summary:
BOOL AgsiSetWatchOnVTR(AGSIVTR hVTR, AGSICALLBACK pfnReadWrite,

AGSIACCESS eAccess);

Parameter:

hVTR Handle of previously defined VTR

pfnReadWrite Pointer to a function that is called on VTR access. The function must have

no parameter and no return value (void function(void)).

eAccess Access type (AGSIREAD, AGSIWRITE, AGSIREADWRITE)

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to set a watch on virtual register (VTR) access. Whenever the specified VTR
is accessed, the specified function is called.

Note:

This function may only be called during the initialization process.

Example:
static void timer1(void) {
// watch function implementation
}

hPORT3 = AgsiDefineVTR("PORT3", AGSIVTRCHAR, 0xFF); // Port 3 pins

AgsiSetWatchOnVTR(hPORT3, timer1, AGSIWRITE);

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 18 of 48

AgsiSetWatchOnMemory

Summary:
BOOL AgsiSetWatchOnMemory(AGSIADDR StartAddress, AGSIADDR

EndAddress, AGSICALLBACK pfnReadWrite, AGSIACCESS eAccess);

Parameter:

StartAddress Start Address of Memory range. See chapter ‘Address representation’!

EndAddress End Address of Memory range. See chapter ‘Address representation’!

pfnReadWrite Pointer to a function that is called on Memory range access.

eAccess Access type (AGSIREAD, AGSIWRITE, AGSIREADWRITE).

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to set a watch on memory range access. Whenever the specified memory
area is accessed, the specified function is called. Please make sure that the specified memory area
is mapped before a watch is set on it. If the memory area is not mapped, an ‘access violation’
would be reported in the output window of µVision. With the ‘AgsiExecuteCommand’ a MAP
command (see µVision manual) can be executed.

The Startaddress and Endaddress usually refer to the XDATA memory for 8051/251 and
8051MX architectures when values between 0 and 0xFFFF are used. For other memory areas,
please see chapter ‘Address Representation’.

Note:

This function may only be called during the initialization process.

Example:

static void eeprom(void) {
// watch function implementation
}

AgsiSetWatchOnMemory(0x0200, 0x02FF, eeprom, AGSIWRITE); // Watch on Write to Memory range

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 19 of 48

AgsiCreateTimer

Summary:
AGSITIMER AgsiCreateTimer(AGSICALLBACK pfnTimer);

Parameter:

pfnTimer Pointer to a function that is called when timer expires

Return Value:

Timer handle if successful otherwise NULL.

Description:

This function is used to create a software timer which is associated with the specified function.
Whenever the timer expires (see AgsiSetTimer function) the specified function is called.

Note:

This function may only be called during the initialization process.

Example:
static void AdcCompleted(void) {
// Timer function implementation
}

AGSITIMER Timer;
Timer = AgsiCreateTimer(AdcCompleted);

AgsiSetTimer(Timer, 10); // set timer (with AdcCompleted handle) to 10 cycles

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 20 of 48

AgsiSetTimer

Summary:
BOOL AgsiSetTimer(AGSITIMER hTimer, DWORD dwClock);

Parameter:

hTimer Timer handle

dwClock Number of machine cycles before the timer watch function is called. A

value of –1 (0xffffffff) disables the timer.

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to set the timer expiration time in states. When the specified number of
states are executed, the function that is associated with the timer handle (see AgsiCreateTimer) is
called. This function must set a new timer value with AgsiSetTimer, either a new value or –1 to
disable the timer. A timer does not automatically reload the last value, it must be set every time it
expires or before.

Example:
static void AdcCompleted(void) {
// Timer function implementation
}

AGSITIMER Timer;
Timer = AgsiCreateTimer(AdcCompleted);

AgsiSetTimer(Timer, 10); // set timer (with AdcCompleted handle) to 10 cycles

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 21 of 48

AgsiDefineMenuItem

Summary:
BOOL AgsiDefineMenuItem(AGSIMENU *pDym);

Parameter:

pDym Pointer to an AGSIMENU structure (see below).

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to define a new menu item in the ‘Peripherals’ pull-down menu of µVision2
and the associated dialog. The menu item is described in the following AGSIMENU structure:
#define AGSIMENU struct AgsiDynaM
struct AgsiDynaM { // Menu item data structure
int nDelim; // Menu template delimiter
char *szText; // Menu item text
void (*fp) (AGSIMENU *pM); // create/bring DlgtoTop function
DWORD nID; // uv2 assigned ID_xxxx
DWORD nDlgId; // Dialog ID
AGSIDLGD *pDlg; // link to dialog attributes

};

nDelim: 1: Standard Menu entry
 2: Popup-Entry (nested submenu)
-2: End of Popup-Group-List

szText: The text that appears in the pull-down menu.

fp: Function that will be called on menu-selection.

nID: Variable used for internal purposes. Do not modify!

NDlgId: Dialog identifier.

PDlg: Pointer to AGSIDLGD structure which contains the dialog properties (see below).

The dialog is described in the following AGSIDLGD structure:
#define AGSIDLGD struct AgsiDlgDat
struct AgsiDlgDat { // every dialog has it's own structure
DWORD iOpen; // auto reopen dialog (pos := 'rc')
HWND hw; // Hwnd of Dialog
BOOL (CALLBACK *wp) (HWND hw, UINT msg, WPARAM wp, LPARAM lp);
RECT rc; // Position rectangle
void (*Update) (void); // Update dialog content
void (*Kill) (AGSIDLGD *pM); // Kill dialog
void *vp; // reserved for C++ Dialogs (Dlg *this)

};

iOpen: This member of the structure can be used to store the status of the dialog (open/close)
when the uVision debugger is closed.

hw: Window handle of dialog when it is open.

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 22 of 48

wp: C dialog function that gets windows messages and notifications when no Microsoft
Foundation Class (MFC) is used. Set to NULL when MFC is used.

rc: Dialog position coordinates can be stored here in order to reopen the dialog at the same
location. These coordinates can be written into the project file with AgsiSetKey when
the debugger is closed.

Update: Pointer to dialog update function. This function is called whenever the screen needs to
be updated, for example after a single step.

Kill: Pointer to function that closes the dialog. This function is called when debugger is
closed.

Note:

This function may only be called during the initialization process.

Example:
// Prototypes for forward references
static void PeriUpdate (void);
static void PeriKill (AGSIDLGD *pM);
static void PeriDisp (AGSIMENU *pM);

// Peripheral Dialog
AGSIDLGD PeriDlg = { 0, NULL, NULL, { -1, -1, -1, -1, }, PeriUpdate, PeriKill };

// Peripheral Menu Item
AGSIMENU PeriMenu = { 1, "&A/D Converter" , PeriDisp, 0, IDD_ADCON, &PeriDlg };

void Init(void) {
AgsiDefineMenuItem(&PeriMenu);

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 23 of 48

AgsiWriteSFR

Summary:
BOOL AgsiWriteSFR(AGSIADDR SFRAddress, DWORD dwValue,

DWORD dwMask);

Parameter:

SFRAddress Address of the SFR

dwValue Value to write into the SFR

dwMask Mask to use for writing

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to write a new value into an SFR. The mask specifies which SFR bits are
overwritten with the new value. A mask bit of 0 does not modify the old value.

Example:
AgsiWriteSFR(0xA8, 0x80, 0xFF); // Write 0x80 to the SFR at Address 0xA8
AgsiWriteSFR(0xA8, 0x80, 0x80); // Set the MSB bit of the SFR at Address 0xA8

// (other bits unchanged)

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 24 of 48

AgsiReadSFR

Summary:
BOOL AgsiReadSFR (AGSIADDR SFRAddress, DWORD* pdwCurrentValue,

DWORD* pdwPreviousValue, DWORD dwMask);

Parameter:

SFRAddress Address of the SFR
pdwCurrentValue Pointer to current Value of the SFR which will be read
pdwPreviousValue Pointer to previous Value of the SFR which will be read
dwMask Mask to use for reading

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to read the value from the SFR with specified mask. The value of the SFR is
ANDed with dwMask before it is written into the pdwCurrentValue or pdwPreviousValue. Of
course, the value of the SFR remains unchanged. pdwCurrentValue and pdwPreviousValue is only
different when AgsiReadSFR is called within a watch function that was triggered by a write access
to the same SFR. This is used to detect transitions of bits in SFRs (e.g. start bit).

Example:
#define IE 0xA8
DWORD cIE, pIE;
AgsiReadSFR(IE, cIE, pIE, 0xFF);

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 25 of 48

AgsiSetSFRReadValue

Summary:
BOOL AgsiSetSFRReadValue(DWORD dwValue);

Parameter:

dwValue SFR Read Value

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to override the value that was read from a SFR with the current instruction.
The SFR value itself is not modified. This is needed for I/O ports and maybe also other SFR’s.
When a I/O port (configured as input) is read with an instruction like ‘MOV A,P0’ the CPU reads
the value of the port pins instead of the content of the P0 register. In order to simulate this
behavior, the AGSISetSFRReadValue function has to pass the value of the port pins to the
instruction simulator whenever the port is read. The AGSISetSFRReadValue function must be
called from a function that is called with a read access to the respective SFR.

Example:
#define P0 0x80

void init(void) {
AgsiSetWatchOnSFR(P0, P0Read, AGSIREAD); //Call ‘P0READ’ when P0 is read

}

static void P0Read(void) { // function called with every read access of P0
…
AgsiSetSFRReadValue(P0 & PORT0); // P0 (Port0 SFR Value), PORT0 (Port0 pins)

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 26 of 48

AgsiWriteVTR

Summary:
BOOL AgsiWriteVTR(AGSIVTR hVTR, DWORD dwValue);

Parameter:

hVTR VTR handle

dwValue Value to write into the VTR

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to write a value into the VTR.

Example:
DWORD port1;

union fv { // float value union
float f;
DWORD DW;

} vref;

port1 = 0x01;
AgsiWriteVTR(hPORT1, port1); // Write port1 to VTR with hPORT1 handle (char VTR)

vref.f = 2.5;
AgsiWriteVTR(hVREF, vref.DW); // Write vref to VTR with hVREF handle (float VTR)

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 27 of 48

AgsiReadVTR

Summary:
BOOL AgsiReadVTR (AGSIVTR hVTR, DWORD* pdwCurrentValue);

Parameter:

hVTR VTR handle

pdwCurrentValue Pointer to current Value of the VTR which will be read

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to read the value from the VTR.

Example:
DWORD port1;

union fv { // float value union
float f;
DWORD DW;

} vref;

AgsiReadVTR(hPORT1, &port1); // Read VTR value with hPORT1 handle (char VTR) into port1
AgsiReadVTR(hVREF, &vref.DW); // Read VTR value with hVREF handle (float VTR) into vref

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 28 of 48

AgsiWriteMemory

Summary:
BOOL AgsiWriteMemory(AGSIADDR Address, DWORD dwCount,

BYTE* pbValue);

Parameter:

Address Start Address of Memory. See chapter ‘Address representation’!

dwCount Number of bytes to write.

pBValue Pointer to buffer which data will be written.

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to write data into memory. The Address usually refers to the XDATA
memory for 8051/251 and 8051MX architectures when values between 0 and 0xFFFF are used.
For other memory areas, please see chapter ‘Address Representation’.

Please make sure that the specified memory area is mapped before writing to it. If the memory
area is not mapped, an ‘access violation’ would be reported in the output window of µVision.
With the ‘AgsiExecuteCommand’ a MAP command (see µVision manual) can be executed.

Example:
BYTE buffer[10];
AgsiWriteMemory(0x1000, 10, buffer); // write 10 bytes to (XDATA) address 0x1000
AgsiWriteMemory(0x1000|(amCODE<<24),10,buffer);// write 10 bytes to (CODE) address 0x1000

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 29 of 48

AgsiReadMemory

Summary:
BOOL AgsiReadMemory(AGSIADDR Address, DWORD dwCount,

BYTE* pbValue);

Parameter:

Address Start Address of Memory

dwCount Number of bytes to read

pBValue Pointer to buffer in which data will be read

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to read data from memory. The Address usually refers to the XDATA
memory for 8051/251 and 8051MX architectures when values between 0 and 0xFFFF are used.
For other memory areas, please see chapter ‘Address Representation’.

Please make sure that the specified memory area is mapped before reading from it. If the memory
area is not mapped, an ‘access violation’ would be reported in the output window of µVision.
With the ‘AgsiExecuteCommand’ a MAP command (see µVision manual) can be executed.

Example:
BYTE buffer[10];
AgsiReadMemory(0x1000, 10, buffer); // read 10 bytes from (XDATA) address 0x1000
AgsiReadMemory(0x1000|(amCODE<<24),10,buffer);// read 10 bytes to (CODE) address 0x1000

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 30 of 48

AgsiGetStates

Summary:
UINT64 AgsiGetStates(void);

Parameter:

None

Return Value:

Number of machine states executed.

Description:

This function is used to get the number of states executed. This number is also visible in the
register window.

Example:
UINT64 States;
States = AgsiGetStates();

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 31 of 48

AgsiGetProgramCounter

Summary:
AGSIADDR AgsiGetProgramCounter(void);

Parameter:

None

Return Value:

Program counter value. See chapter ‘Address representation’.

Description:

This function is used to get the current program counter value (PC). This number is also visible in
the register window.

Example:
AGSIADDR pc;
pc = AgsiGetProgramCounter();

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 32 of 48

AgsiIsInInterrupt

Summary:
DWORD AgsiIsInInterrupt(void);

Parameter:

None

Return Value:

The following values or the sum of several values are possible:
0: No interrupt is pending or in progress.
1: An interrupt with priority 0 is in progress.
2: An interrupt with priority 1 is in progress.
4: An interrupt with priority 2 is in progress.
8: An interrupt with priority 3 is in progress.
A value of 10 means that an interrupt with priority 3 has interrupted another interrupt with priority
1. The values are OR’ed if interrupts are nested.

Description:

This function is used to examine if and which interrupt level is in progress. It also indicates the
number of interrupts that are currently nested.

Note:

This function is only implemented for 8051/251 and 8051Mx derivatives, not for 80C166
derivatives. In 80C166 derivatives, the PSW register contains the current interrupt level.

Example:
if (AgsiIsInInterrupt()) { // interrupt in progress }
else { // normal program execution }

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 33 of 48

AgsiIsSleeping

Summary:
BOOL AgsiIsSleeping (void);

Parameter:

None

Return Value:

TRUE if CPU is in sleep mode, FALSE if CPU is running.

Description:

This function is used to examine if the CPU is in sleep mode (power save mode).

Example:
if (AgsiIsSleeping()) {
// CPU is in sleep mode.

} else {
// Normal CPU mode

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 34 of 48

AgsiStopSimulator

Summary:
void AgsiStopSimulator(void);

Parameter:

None.

Return Value:

None.

Description:

This function is used to stop the simulation. This is useful when the simulated peripheral or the
application causes a serious conflict. An error message should be printed into the command
window (see AgsiMessage) or a message box should be opened in this case to notify the user.

Example:
if (critical_error) {
AgsiStopSimulator() // stop simulation

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 35 of 48

AgsiTriggerReset

Summary:
void AgsiTriggerReset(void);

Parameter:

None.

Return Value:

None.

Description:

This function is used to trigger a CPU reset. It can be used when a watchdog timer should be
simulated or an external device causes a reset.

Example:
if (WatchdogOverflow) {
AgsiTriggerReset() // stop simulation

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 36 of 48

AgsiUpdateWindows

Summary:
void AgsiUpdateWindows(void);

Parameter:

None.

Return Value:

None.

Description:

This function is used to force µVision2 to update all windows. This function is necessary to keep
dialogs, watch windows or memory windows up to date when a new SFR value has been entered in
a different dialog. Do not use this function from a function that is called because of a time or
access watch! Calling this function frequently would slow down the simulator performance
immense.

Example:
void CPeriDialog::OnPort0Input() {
AgsiWriteVTR(hPORT0, port0);
AgsiUpdateWindows() // update all windows to display the new Port0 value

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 37 of 48

AgsiHandleFocus

Summary:
void AgsiHandleFocus (HWND hwndDialog);

Parameter:

hwndDialog Dialog handle if dialog gets focus or NULL if dialog looses focus.

Return Value:

None.

Description:

This function is needed to forward accelerator keys such as TAB to the dialog message handler.
Whenever a dialog receives a WM_ACTIVATE message, it has to update its status with this
function.

Example:
void CPeriDialog::OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized) {
CDialog::OnActivate(nState, pWndOther, bMinimized);

switch (nState) {
case WA_INACTIVE:
AgsiHandleFocus(NULL); // Clear Modeless Handle
break;

case WA_ACTIVE:
case WA_CLICKACTIVE:
AgsiHandleFocus(m_hWnd); // Set Modeless Handle
break;

}
}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 38 of 48

AgsiGetExternalClockRate

Summary:
DWORD AgsiGetExternalClockRate(void)

Parameter:

None.

Return Value:

External clock frequency in Hz.

Description:

This function is used to retrieve the external clock rate. The virtual register XTAL contains the
same value. The external clock frequency can be set in µVision under ‘Options for Target’ ->
‘Target Clock’ (e.g. a standard 8051 microcontroller runs at 12 MHz).

Example:
If (AgsiGetExternalClockRate() > 20000000) { // ext. clock > 20MHz
AgsiMessage(“CAN controller cannot work with the specified CPU clock\n”);

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 39 of 48

AgsiGetInternalClockRate

Summary:
DWORD AgsiGetInternalClockRate(void)

Parameter:

None.

Return Value:

Internal clock frequency in Hz.

Description:

This function is used to retrieve the internal CPU clock rate. The virtual register CLOCK contains
the same value. The internal clock frequency is calculated out of the external clock frequency
divided by a clock prescaler. This prescaler is programmable in some derivatives in order to save
power. The internal clock frequency of a standard 8051 microcontroller is typically 1 MHz
(external clock /12).

Example:
DWORD Clock;
Clock = AgsiGetInternalClockRate(); // get internal clock rate
Baudrate = Clock / BaudratePrescaler; // calculate baudrate

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 40 of 48

AgsiGetClockFactor

Summary:
double AgsiGetClockFactor(void)

Parameter:

None.

Return Value:

External clock to internal clock ratio.

Description:

This function is used to retrieve the external clock to internal clock ratio. This value is needed
whenever a simulated peripheral is driven with the external clock or if it has its own independent
timing. Since time watches are always based on the internal clock rate, this factor is needed to
calculate the time for such peripherals. This factor may change during program execution if the
simulated microcontroller has a programmable clock prescaler in order to save power. On the other
hand, the value of this factor may be between 0 and 1 when the CPU has a clock multiplier (PLL).
Before and after this factor changes, all peripherals are notified (see AgsiEntry AGSI_PREPLL
and AGSI_POSTPLL) so that time watches can be recalculated.

Example:
double prescaler;
prescaler = AgsiGetClockFactor();
AgsiSetTimer(mytimer, (DWORD)(1000.0 / prescaler)); // set timer to 1000 external cycles

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 41 of 48

AgsiMessage

Summary:
void AgsiMessage(const char* pszFormat, ...)

Parameter:

printf compatible.

Return Value:

None.

Description:

This function prints a string into the command window of µVision. The parameters are compatible
to a C printf function. With this function. it is possible to output warnings or debug messages.

Note:

The content of the command window can be logged to file by using the ‘LOG’ command.

Example:
AgsiMessage (“Timer was started at address %d \n”, AgsiGetProgramCounter());

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 42 of 48

AgsiSetTargetKey

Summary:
BOOL AgsiSetTargetKey(const char* pszKey, const char *pszString)

Parameter:

pszKey String that specifies the key name.

pszString String that contains the information to be stored.

Return Value:

None.

Description:

This function stores a text string in the project file (*.OPT). It can be used to store configuration
information such as dialog positions so that a dialog opens at the same place. These settings are
stored for each target of a project separately.

Example:
// store dialog position in the project file
AgsiSetTargetKey (“MYKEY”, “Dialog1 XPOS=%d YPOS=%d”, rc.x, rc.y);

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 43 of 48

AgsiGetTargetKey

Summary:
const char * AgsiGetTargetKey(const char* pszKey)

Parameter:

pszKey String that specifies the key name.

pszString String that contains the information to be stored.

Return Value:

Pointer to string that was stored in the project file or NULL if the key was not found.

Description:

This function retrieves a text string that was written into the project file (*.OPT) with
AgsiSetTargetKey before.

Example:
pMyConfiguration = AgsiGetTargetKey (“MYKEY”); // retrieves the string
sscanf(pMyConfiguration, “%d”, &rc.x); // convert string into values…

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 44 of 48

AgsiExecuteCommand

Summary:
void AgsiExecuteCommand(const char* pszCommand)

Parameter:

PszCommand Pointer to string that contains a valid µVision debugger command.

Return Value:

None.

Description:

This function copies the specified string into the µVision command line and executes it. The
string must contain a valid µVision debugger command. The command and it’s output is visible in
the command window. It can be used e.g. to map memory or to open a log file.

Example:
AgsiExecuteCommand(“MAP X:0x1000, X:0x1FFF read write”); // for an 8051
AgsiExecuteCommand(“MAP 0x100000, 0x10FFFF read write execute”); // for an 80166
AgsiExecuteCommand(“LOG >C:\MYLOGFILE.LOG”);

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 45 of 48

AgsiGetLastMemoryAddress

Summary:
DWORD AgsiGetLastMemoryAddress(void)

Parameter:

None.

Return Value:

Address of last memory access. See chapter ‘Address representation’!

Description:

This function is used to determine which read or write watch caused the function call when more
than one access watch is set.

Example:
void updatetimer(void) {
DWORD LastAddress;
LastAddress = AgsiGetLastMemoryAddress();
if (LastAddress == TCFG) { // updatetimer was called because of TCFG access
} else if (LastAddress == THIGH) { // updatetimer was called because of THIGH access
}

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 46 of 48

AgsiGetSymbolByName

Summary:
DWORD AgsiGetSymbolByName (AGSISYMDSC *pSymbol)

Parameter:

pSymbol Pointer to AGSISYMDSC structure.

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to determine the value of a symbol. The function parameter points to a
structure that holds the name of the symbol to be searched. The search result (val, type and Ok) is
written into the same structure.
typedef struct { // Search for Sym by Name or Value.
AGSISYMMASK nMask; // search mask (AGSI_SYM_LOC | ...)
char szName [256]; // search/found name (zero-terminated
UINT64 val; // search/found Adr/Value
AGSISYMTYPE type; // type of found symbol (AGSI_TP_???)
DWORD Ok; // 1:=Ok, else find failed.

} AGSISYMDSC;

nMask: Not used with this function call.

szName: Name of symbol to be searched for. Must be set before AgsiGetSymbolByName is
called.

val: Address or value of found symbol.

type: Type of found symbol. See AGSITYPE description on the next page.

Ok: Same as function return value. True if search has been successful or FALSE if not.

Note:

The user application is not yet loaded when the peripheral DLL is initialized. Searching for
symbols at this time makes no sense. Since a reset is executed after a load command, the reset
function is a good place to request symbol values.

Example:
AGSISYMDSC MainSymbol;
DWORD Found;
AGSIADDR MainAddress;

strcpy(MySymbol.szName, “main”);
Found = AgsiGetSymbolByName(&MainSymbol);
if (Found && (MainSymbol.type == AGSI_TP_FUNC)) { // found ‘main’ function?
MainAddress = (AGSIADDR) MainSymbol.val; // address of ‘main’ function

}

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 47 of 48

AgsiGetSymbolByValue

Summary:
DWORD AgsiGetSymbolByValue (AGSISYMDSC *pSymbol)

Parameter:

pSymbol Pointer to AGSISYMDSC structure.

Return Value:

TRUE if successful otherwise FALSE.

Description:

This function is used to determine a symbol name from its value. The function parameter points to
a structure that holds the value and mask of the symbol to be searched. The search result (name,
type and Ok) is written into the same structure.
typedef struct { // Search for Sym by Name or Value.
AGSISYMMASK nMask; // search mask (AGSI_SYM_LOC | ...)
char szName [256]; // search/found name (zero-terminated
UINT64 val; // search/found Adr/Value
AGSISYMTYPE type; // type of found symbol (AGSI_TP_???)
DWORD Ok; // 1:=Ok, else find failed.

} AGSISYMDSC;

nMask: Specifies the symbol type to search for. This parameter must be set before
AgsiGetSymbolByValue is called. Different types can be combined with ‘|’. Possible
values are:
AGSI_SYM_VAR search for non-bit Variables
AGSI_SYM_CON search for named Constants
AGSI_SYM_BIT search for Bit in Memory
AGSI_SYM_LOC search for Function/Label
AGSI_SYM_SFR search for SFR name.

szName: Name of found symbol.

val: Address or value of symbol to search for. Must be set before AgsiGetSymbolByValue
is called.

type: Type of found symbol. See AGSITYPE below for all possible symbol types.
AGSI_TP_VOID number without specific type
AGSI_TP_BIT bit
AGSI_TP_CHAR signed char (8 bit)
AGSI_TP_UCHAR unsigned char (8 bit)
AGSI_TP_INT signed integer (16 bit)
AGSI_TP_UINT unsigned integer (16 bit)
AGSI_TP_SHORT signed integer (16 bit)
AGSI_TP_USHORT unsigned integer (16 bit)
AGSI_TP_LONG signed long (32 bit)
AGSI_TP_ULONG unsigned long (32 bit)
AGSI_TP_FLOAT floating point number (32 bit)
AGSI_TP_DOUBLE double precision floating point number (64 bit)
AGSI_TP_PTR pointer

Implementing µµµµVision2 DLL’s for Advanced Generic Simulator Interface Page 48 of 48

AGSI_TP_UNION union
AGSI_TP_STRUCT structure
AGSI_TP_FUNC function
AGSI_TP_STRING char array
AGSI_TP_ENUM enumberation
AGSI_TP_FIELD array

Ok: Same as function return value. True if search has been successful or FALSE if not.

Note:

The user application is not yet loaded when the peripheral DLL is initialized. Searching for
symbols at this time makes no sense. Since a reset is executed after a load command, the reset
function is a good place to request symbol values.

Example:
AGSISYMDSC MySymbol;
DWORD Found;
AGSIADDR MainAddress;

MySymbol.val = 0xFF; // search for SFR at address 0xFF
MySymbol.nMask = AGSI_SYM_SFR;
Found = AgsiGetSymbolByValue(&MainSymbol);
if (Found) { // found SFR?
MainSymbol.szName; // szName contains the SFR name at address 0xFF

}

Copyright © 2001 Keil Software, Inc. All rights reserved.

In the USA: In Europe:
Keil Software, Inc. Keil Elektronik GmbH
1501 10th Street, Suite 110 Bretonischer Ring 15
Plano, TC 75074 D-85630 Grasbrunn b. Munchen
USA Germany

Sales: 800-348-8051 Phone: (49) (089) 45 60 40 - 0
Phone: 972-312-1107 FAX: (49) (089) 46 81 62
FAX: 972-312-1159

E-mail: sales.us@keil.com Internet: http://www.keil.com/ E-mail: sales.intl@keil.com
 support.us@keil.com support.intl@keil.com

	Introduction
	How to use a Sample Peripheral DLL
	Implementing own peripheral DLLs: Required Steps
	How simulation basically works
	Address representation
	AGSI Function Description
	AgsiEntry
	AgsiDefineSFR
	AgsiDefineVTR
	AgsiDeclareInterrupt
	AgsiSetWatchOnSFR
	AgsiSetWatchOnVTR
	AgsiSetWatchOnMemory
	AgsiCreateTimer
	AgsiSetTimer
	AgsiDefineMenuItem
	AgsiWriteSFR
	AgsiReadSFR
	AgsiSetSFRReadValue
	AgsiWriteVTR
	AgsiReadVTR
	AgsiWriteMemory
	AgsiReadMemory
	AgsiGetStates
	AgsiGetProgramCounter
	AgsiIsInInterrupt
	AgsiIsSleeping
	AgsiStopSimulator
	AgsiTriggerReset
	AgsiUpdateWindows
	AgsiHandleFocus
	AgsiGetExternalClockRate
	AgsiGetInternalClockRate
	AgsiGetClockFactor
	AgsiMessage
	AgsiSetTargetKey
	AgsiGetTargetKey
	AgsiExecuteCommand
	AgsiGetLastMemoryAddress
	AgsiGetSymbolByName
	AgsiGetSymbolByValue

