
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 712

Keywords: DS80C400, ethernet drivers, ethernet controller, TCP/IP router, source code, MII, MAC, PHY,
ethernet driver, special function register, SFR, control status register, CSR, MAC address, high speed
microcontroller, micros

APPLICATION NOTE 712

DS80C400 Ethernet Drivers
Jun 06, 2003

Abstract: The DS80C400 high-speed microcontroller has a built-in Ethernet media-access controller
(MAC) with an industry-standard media independent interface (MII). This application note presents
design considerations and fully tested example assembly code for an Ethernet interrupt handler, and
code for sending and receiving Ethernet packets. Using these routines, you can develop custom
applications such as TCP/IP routers.

Introduction
The DS80C400 high-speed microcontroller has a built-in Ethernet media-access controller (MAC) with
an industry-standard media independent interface (MII). Please refer to the High-Speed Microcontroller
User's Guide: DS80C400 Supplement and the DS80C400 data sheet for details.

This application note presents design considerations and fully tested example assembly code for an
Ethernet interrupt handler, and code for sending and receiving Ethernet packets. Using these routines,
you can develop custom application such as TCP/IP routers. Full source code and the header files
defining the symbolic constants can be found on the Dallas Semiconductor ftp site at
http://files.maximintegrated.com/microcontroller/mxtni/ds80c400/ethdriver/.

Page 1 of 13

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/microcontrollers
http://www.maximintegrated.com/microcontrollers
http://www.maximintegrated.com/DS80C400
http://files.maximintegrated.com/microcontroller/mxtni/ds80c400/ethdriver/

Figure 1. DS80C400 Ethernet Buffer.

The DS80C400 MAC Hardware
Ethernet Buffer Memory
The DS80C400 communicates with the network via a set of special function registers (SFRs) and 8kB of
dual port buffer memory. The buffer memory is divided into the receive and send memory and can be
addressed in blocks of 256 bytes ("pages"). The receive pages are organized in a circular fashion,
managed by the DS80C400 hardware. The send buffer is managed by the user's application.

The location for the Ethernet buffer is usually address 0FFE000h (default configuration established by
ROM loader), assigned to the constant ETH_RECEIVE_BUFFER.

Ethernet Control Status Registers
The primitives ReadCSR and WriteCSR are used to read and write the DS80C400 Ethernet control
status registers (CSRs). Note that the example code does not save the processor registers across
function calls. When using this code, ensure that you don't destroy the processor state (this is especially
important when using interrupt driven data transfer).

Page 2 of 13

Read CSR
ReadCSR reads a control status register.

;**
;*
;* Function Name: ETH_ReadCSR
;*
;* Description: Read from specified register.
;*
;* Input(s): a -> register address
;*
;* Outputs(s): r3:r2:r1:r0 -> 32 bit register byte value
;*
;**
ETH_ReadCSR:
 push eie
 clr eie.5
 mov csra, a ; Load CSRA SFR with
the LSB of the
 ; 16-bit address of
the targeted CSR
 anl bcuc, #0f0h ; Clear BCUC command
bits
 orl bcuc, #BCU_READ_CSR ; Write read CSR
command to BCUC SFR
 push acc
eth_readcsr_busy: ; Wait until Busy bit
in BCUC SFR is reset
 mov a, bcuc ; Move to acc since
BCUC is not bit cap.
 jb acc.7, eth_readcsr_busy
 pop acc

 mov r3, csrd ; Read CSRD SFR for
MSB of 32 bit data
 mov r2, csrd
 mov r1, csrd
 mov r0, csrd ; LSB
 pop eie
 ret

Listing 1. ReadCSR Reads a Control Status Register

Note that this code saves, disables, and restores the Ethernet activity interrupt enable (eie.5) to make
sure that a write to the CSR is not interrupted by an Ethernet activity interrupt. The definition for the
bcuc, csrd and csra SFRs can be found in the include file ds80c400.inc. Constant values such as
BCUC_READ_CSR are defined in eth400.inc.

Write CSR
The WriteCSR function writes a 32 bit value to a control status register.

;**
;*
;* Function Name: ETH_WriteCSR
;*
;* Description: Write to specified register.
;*
;* Input(s): a -> register address
;* r3:r2:r1:r0 -> 32 bit value
;*
;* Outputs(s): N/A

Page 3 of 13

;*
;**
ETH_WriteCSR:
 push eie
 clr eie.5
 mov csrd, r3 ; Write CSRD SFR for MSB of
32 bit data
 mov csrd, r2
 mov csrd, r1
 mov csrd, r0 ; LSB

 mov csra, a ; Load CSRA SFR with the LSB
of the
 ; 16-bit address of the
targeted CSR
 anl bcuc, #0f0h ; Clear bcuc command bits 0-3
 orl bcuc, #BCU_WRITE_CSR ; Write write CSR command to
bcuc SFR

 push acc
eth_writecsr_busy: ; Wait until Busy bit in BCUC
SFR is reset
 mov a, bcuc
 jb acc.7, eth_writecsr_busy
 pop acc
 pop eie
ret

Listing 2. WriteCSR Writes a Control Status Register

Initialization
MAC Address
In order to use the DS80C400 on the network, a globally unique MAC address needs to be programmed
into the device. The MAC address can either be acquired from the DS2502-E48 MAC address 1-Wire®
part (Dallas Semiconductor has registered a range of ready-to-go MAC addresses in order to simplify
building embedded devices) or from another IEEE® registered source.

Very important: Under NO circumstances select a random MAC address or the address of another
existing device. MAC addresses are globally unique and network stability depends on well behaved
devices!

;**
;*
;* Function Name: ETH_LoadEthernetAddress
;*
;* Description: Load the 48 bit ethernet address into the controller.
;*
;* Input(s): dptr0 -> pointer to the Ethernet address (big-endian)
; for example 00 60 01 02 03 04
;*
;* Outputs(s): N/A
;*
;**
ETH_LoadEthernetAddress:
 movx a, @dptr
 mov r0, a
 inc dptr
 movx a, @dptr
 mov r1, a
 inc dptr
 movx a, @dptr
 mov r2, a

Page 4 of 13

http://standards.ieee.org/regauth/oui/tutorials/EUI48.html

 inc dptr
 movx a, @dptr
 mov r3, a
 inc dptr

 mov a, #CSR_MAC_LO
 acall ETH_WriteCSR

 movx a, @dptr
 mov r0, a
 inc dptr
 movx a, @dptr
 mov r1, a
 clr a
 mov r2, a
 mov r3, a

 mov a, #CSR_MAC_HI
 acall ETH_WriteCSR
 ret

Listing 3. LoadEthernetAddress Loads the MAC Address into the DS80C400

Note that two CSR writes are required to fully load the 6-byte Ethernet MAC address. Since this code is
only called during initialization, it is not protected against Ethernet activity interrupts.

Initializing the Ethernet MAC further requires configuration of the partition between receive buffer
(incoming packets) and send buffer (outgoing packets). Figure 1 shows this partition between page n-1
and page n.

To simplify code and avoid dropping inbound packets, most applications will benefit from partitioning the
buffer memory in a fashion that reserves most of the pages for inbound packets and only allocates
enough pages for one outbound packet. The reason for this is that Ethernet is a shared medium and—
even in switched networks—only a fraction of incoming packets are of interest to an application.
Therefore, we define the constants ETH_TRANSMIT_PAGE to 17h and ETH_SEND_BUFFER to
ETH_RECEIVE_BUFFER + 17h x 256.

Constant Value

ETH_TRANSMIT_PAGE 17h

ETH_SEND_BUFFER 0FFF700h

The following code first disables the transmitter and then initializes the DS80C400 buffer memory to
select the 23:9 receive:send partition. The code then sets the half/full duplex status (this status can be
acquired from the MII, see below) and enables the transmitter.

Enabling the Transceiver

;**
;*
;* Function Name: ETH_EnableTransceiver
;*
;* Description: Enable receiver and transmitter for Ethernet controller.
;*
;* Input(s): N/A
;*
;* Outputs(s): N/A

Page 5 of 13

;*
;**
ETH_EnableTransceiver:
 push eie
 clr eie.5
 ; First, disable transmitter and receiver (full duplex bit is
 ; not settable if they are on)
 clr a
 mov r3, a
 mov r2, a
 mov r1, a
 mov r0, a
 mov a, #CSR_MAC_CTRL
 acall ETH_WriteCSR

 ; Set Ethernet buffer sizes
 TIMEDACCESS
 mov ebs, #ETH_TRANSMIT_PAGE ; Also clears the flush
filter failed bit
 mov r3, #00h ; Select non-byte swap mode
 mov dptr, #ETH_DUPLEX_STATUS
 movx a, @dptr
 swap a ; Move bit to position 4
(20:F)
 jnz eth_et_fullduplex
 orl a, #80h ; Disable receive own
(23:DRO)
eth_et_fullduplex:
 orl a, #08h ; Pass all multicast (19:PM)
– OPTIONAL
 mov r2, a ; Set duplex mode according
to PHY detection
 mov r1, #10h ; Perfect filtering of
multicast,
 ; late collision control, no
auto pad strip
 mov r0, #0ch ; Block-off limit 10, no
deferral check,
 ; enable transmitter and
receiver
 mov a, #CSR_MAC_CTRL
 acall ETH_WriteCSR
 pop eie
 ret

Listing 4. EnableTransceiver Partitions the Buffer Memory and Enables the Transceiver

Note that this code assumes the duplex status information is stored at location ETH_DUPLEX_STATUS in
MOVX memory.

Flushing the Buffer
Next, the Ethernet buffer is flushed to ensure clean startup.

;**
;*
;* Function Name: ETH_Flush
;*
;* Description: Release all resources.
;*
;* Input(s): N/A
;*
;* Outputs(s): N/A
;*
;**
ETH_Flush:

Page 6 of 13

 anl bcuc, #0f0h ; Clear bcuc command bits
 orl bcuc, #BCU_INV_CURR ; Write release command to bcuc SFR
 ret

Listing 5. Flush Flushes the Receive Buffer

Sending and Receiving
Sending a Packet
To send a packet, the user's application must first place the packet data in the Ethernet send buffer. If a
previous packet was placed at the same address, the application must wait for the transmit to be
complete before modifying the buffer memory.

Note that the first four bytes of the send buffer are reserved for the send status word. The first byte that
will be transmitted is at location ETH_SEND_BUFFER+4.

;**
;*
;* Function Name: ETH_Transmit
;*
;* Description: Transmit the raw Ethernet packet currently in the
;* Ethernet send buffer
;*
;* Input(s): r5:r4 = total packet length in bytes
;*
;* Outputs(s): N/A
;*
;**
ETH_Transmit:
 ; Ethernet frame is in transmit buffer (Starting at
 ; page offset = 4). Byte count is in r5:r4

 ; Load MSB of byte count to bcud SFR
 mov bcud, r5
 ; Load LSB of byte count to bcud SFR
 mov bcud, r4

 ; Load starting page address to bcud SFR
 mov bcud, #ETH_TRANSMIT_PAGE

 ; XXX Set transmit in progress flag in your software here
 ; XXX so you can avoid interrupting a transmit in progress.
 ; XXX e.g.: setb ds400_xmit

 ; Write transmit request to bcuc SFR
 anl bcuc, #0f0h ; Clear bcuc command bits
 orl bcuc, #BCU_XMIT ; Write transmit command to
bcuc SFR
 ret

Listing 6. Transmit Sends a Packet Onto the Network

Receiving a Packet
When a packet is received (usually indicated by an interrupt, see below), the user code needs to unload
the packet from the Ethernet buffer memory and then release the buffer memory, unlike the send buffer,
which is managed by the user, the receive buffer is managed by the DS80C400.

Page 7 of 13

Unloading the Packet Data
Note that a received packet can span several pages in the receive buffer and it can wrap from the last
page in the receive buffer to the first page in the receive buffer. Ensure that your packet copy routine
properly handles this case.

;**
;*
;* Function Name: ETH_Receive
;*
;* Description: Start unloading the last packet from the
;* Ethernet controller.
;*
;* Input(s): N/A
;*
;* Outputs(s): N/A
;*
;**
ETH_Receive:
 ; Get location of buffer and set dptr0 accordingly
 mov a, bcud
 anl a, #1fh ; we are not
interested in the page count
 ; so now a
contains the starting page number
 ; (1 page is
256 bytes)

 mov dptr, #ETH_RECEIVE_BUFFER ; receive
buffer starting address
 mov b, a ; "multiply"
page by 256 to get byte count
 clr a
 acall Add_Dptr0_16 ; and add it
to receive buffer starting address
 ; dptr0 now points to the receive status word of the packet

 movx a, @dptr
 inc dptr
 mov r2, a ; save LSB of
frame length

 movx a, @dptr
 inc dptr
 mov r3, a ; save this

; check runt frame, watchdog time-out
 anl a, #(80h or 40h)
 jnz eth_ueh_release

 mov a, r3 ; restore and
get frame length
 anl a, #3fh
 mov r3, a ; save HSB of
frame length

 movx a, @dptr
 inc dptr

 ; check CRC error, MII error, collision seen, frame too long
 anl a, #(20h or 08h or 02h or 01h)
 jnz eth_ueh_release

 movx a, @dptr ; MSB of
status word
 ; check for length error, control frame, unsupported ctrl frame
 ; missed frame
 mov b, a

Page 8 of 13

 anl a, #(80h or 20h or 04h or 02h or 01h)
 jnz eth_ueh_release ; bad bad bad
frame!

 mov a, b
 anl a, #40h ; check for
filter match
 jz eth_ueh_release

 ; XXX Copy the packet into your buffer here.
 ; XXX r3:r2 contain the length of the packet,
 ; XXX dptr0 points to the beginning of the data.
 ; XXX Note that the buffer can wrap!
eth_ueh_release:
 ret

Listing 7. Receive Receives a Packet from the Network

Releasing the Buffer
After processing an incoming packet, the user code needs to release the buffer memory in the Ethernet
receive buffer.

;**
;*
;* Function Name: ETH_Release
;*
;* Description: Release resources.
;*
;* Input(s): N/A
;*
;* Outputs(s): N/A
;*
;**
ETH_Release:
 anl bcuc, #0f0h ; Clear bcuc command bits
 orl bcuc, #BCU_INV_CURR ; Write release command to
bcuc SFR
 ret

Listing 8. Release Releases a Packet from the Receive Buffer

Interrupt Driven Operation
Instead of polling the bit flags in the bcuc SFR, an application should use the Ethernet activity interrupt
for better performance. There is one interrupt handler for both receive and transmit complete interrupts.
The Ethernet activity interrupt calls location 000073h. Since there are only 8 bytes per interrupt, we
suggest installing a long jump to the actual function:

org 73h
ljmp ETH_ProcessInterrupt

Processing Interrupts
The following code handles both receive and transmit complete interrupts.

;**
;*
;* Function Name: ETH_ProcessInterrupt
;*
;* Description: ISR for Ethernet interrupt

Page 9 of 13

;*
;* Input(s): N/A
;*
;* Outputs(s): N/A
;*
;* Destroyed: Nothing.
;**
ETH_ProcessInterrupt:
 push acc
 mov a, bcuc
 anl a, #rif ; Received data?
 jz eth_pi_no_receive
 ; XXX Call your receive packet handler here.
 ; XXX Ensure it saves and restores all registers!
 ; XXX E.g.: acall ETH_ProcessPacket
eth_pi_no_receive:
 mov a, bcuc
 anl a, #tif
 jz eth_pi_exit ; Transmitted data?
 ; XXX If you keep track of a send in progress, here's the place
 ; XXX to clear the flag.
 ; XXX E.g.: clr ds400_xmit
 anl bcuc, #(not(tif) and 0f0h) ; and NOOP command
 ; XXX If you keep transmit queue, send next packet from queue
 ; XXX E.g.: acall ETH_SendNextFromQueue
eth_pi_exit:
 pop acc
 reti

Listing 9. ProcessInterrupt Handles Ethernet Activity Interrupts

Enabling Interrupts

Finally, after enabling the Ethernet interrupt, the DS80C400 is ready to
receive and send packets.
;**
;*
;* Function Name: ETH_EnableInterrupts
;*
;* Description: Enable Ethernet transmit/receive interrupts.
;*
;*
;* Input(s):
;*
;* Outputs(s):
;*
;* Destroyed:
;**
ETH_EnableInterrupts:
 ; XXX If you keep track of transmits in progress, clear
 ; XXX the flag here.
 ; XXX E.g.: clr ds400_xmit
 anl bcuc, #(not(rif or tif) and 0f0h) ; Clear interrupt
flags
 setb eie.5 ; Enable Ethernet
activity interrupt
 clr eaip ; Set network
interrupt priority low
 ret

Listing 10. EnableInterrupts Enables the Ethernet Activity Interrupt

Media Independent Interface (MII)
The Media Independent Interface (MII) defines I/O lines that allow the DS80C400 to communicate with

Page 10 of 13

the physical layer interface (PHY). Even though many PHYs have a vendor-specific command set, there
are common commands that most PHYs share, defined in the IEEE Std. 802.3. Communications with a
PHY can be used to query a PHY for its auto negotiation and duplex state, and to isolate and "un-
isolate" PHYs (in the case of multiple PHYs) and reconfigure a PHY.

The MII on the DS80C400 is accessed through CSR registers. The following routines read and write an
MII register in a given PHY.

Read MII Register

;**
;*
;* Function Name: ETH_ReadMII
;*
;* Description: Read MII register
;*
;* Input(s): a -> register number, b -> PHY number
;*
;* Outputs(s): r1:r0 -> contents of MII register
;*
;* Notes: MII address Register (14h):
;* 31-16 -- reserved
;* 15-11 -- PHY address
;* 10-6 -- MII register
;* 5-2 -- reserved
;* 1 -- MII write
;* 0 -- MII busy
;*
;**
ETH_ReadMII:
 push eie
 clr eie.5
 mov r7, a ; Save register number
 ; Wait until MII is not busy
eth_rmii_busy:
 mov a, #CSR_MII_ADDR
 acall ETH_ReadCSR

 mov a, r0
 jb acc.0, eth_rmii_busy

 clr a
 mov r3, a ; Reserved - always clear
 mov r2, a

 mov a, r7 ; Restore register number
 rr a
 rr a ; And shift to pos 10:8
 mov r7, a ; Save result of shift
 anl a, #07h ; Select bits 0:2
 mov r1, a
 mov a, b ; Load PHY address
 anl a, #1fh
 rl a
 rl a
 rl a ; shift to 7:3
 orl a, r1
 mov r1, a

 mov a, r7 ; Restore result of shift
 anl a, #0c0h ; Select bits 7:6
 mov r0, a

 mov a, #CSR_MII_ADDR
 acall ETH_WriteCSR

Page 11 of 13

 ; Wait until MII is not busy
eth_rmii_busy2:
 mov a, #CSR_MII_ADDR
 acall ETH_ReadCSR

 mov a, r0
 jb acc.0, eth_rmii_busy2

 ; Read MII data register
 mov a, #CSR_MII_DATA
 acall ETH_ReadCSR
 pop eie
 ret

Listing 11. ReadMII Reads an MII Register from a Given PHY

Write MII Register

;**
;*
;* Function Name: ETH_WriteMII
;*
;* Description: Write MII register
;*
;* Input(s): a -> register number, b -> PHY number, r1:r0 -> data
;*
;* Outputs(s): N/A
;*
;**
ETH_WriteMII:
 push eie
 clr eie.5

 push 0 ; Save r1 and r0
 push 1

 mov r7, a ; Save register number
 ; Wait until MII is not busy
eth_wmii_busy:
 mov a, #CSR_MII_ADDR
 acall ETH_ReadCSR

 mov a, r0
 jb acc.0, eth_wmii_busy

 pop 1
 pop 0

 clr a
 mov r3, a ; Reserved - always clear
 mov r2, a

 ; Write MII data register
 mov a, #CSR_MII_DATA
 acall ETH_WriteCSR

 mov a, r7 ; Restore register number
 rr a
 rr a ; And shift to pos 0:2
 mov r7, a ; Save result of shift
 anl a, #07h ; Select bits 0:2
 mov r1, a
 mov a, b ; Load PHY address
 anl a, #1fh
 rl a
 rl a
 rl a ; shift to 7:3

Page 12 of 13

 orl a, r1
 mov r1, a

 mov a, r7 ; Restore result of shift
 anl a, #0c0h ; Select bits 7:6
 orl a, #2 ; Select write bit :1:
 mov r0, a

 mov a, #CSR_MII_ADDR
 acall ETH_WriteCSR
 pop eie
 ret

Listing 12. WriteMII Writes an MII Register to a Given PHY

MII Example
The following code reads the MII status register of a PHY:

 mov b, #0
 mov a, #MII_STATUS
 acall ETH_ReadMII

Related Parts

DS80C400 Network Microcontroller Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 712: http://www.maximintegrated.com/an712
APPLICATION NOTE 712, AN712, AN 712, APP712, Appnote712, Appnote 712
© 2013 Maxim Integrated Products, Inc.
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 13 of 13

http://www.maximintegrated.com/datasheet/index.mvp/id/3609
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS80C400
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an712
http://www.maximintegrated.com/legal

	maximintegrated.com
	DS80C400 Ethernet Drivers - Application Note - Maxim

