[1SS wARE

RTX-51
RTX-251

Real-Time Multitasking Executives for the
8051 and MCS® 251 Microcontrollers

User’'s Guide 09.97

Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure agreement
and may be used or copied only in accordance with the terms of the agreement. It
is against the law to copy the software on any medium except as specifically
allowed in the license or nondisclosure agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, dectronic or mechanical,
including photocopying, recording, or information storage and retrieval systems,
for any purpose other than for the purchaser’s personal use, without written
permission.

© Copyright 1988-1996 Keil Elektronik GmbH., Mettler & Fuchs AG, and Kell
Software, Inc.
All rights reserved.

Kell C51™ and dScope™ are trademarks of Keil Elektronik GmbH.

Microsoft®, MS-DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.

IBM®, PC®, and PS/2"® are registered trademarks of International Business
Machines Corporation.

Intd®, MCS® 51, MCS® 251, ASM-51°, and PL/M-51® are registered
trademarks of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

06.04.99

RTX-51/RTX-251 iii

Preface

RTX-51 isaruntime library that, together with C51, allows real-time systems to
be implemented for all processors of the 8051 family (e.g., 8051, 8052, 80515,
etc.), except for the 82C751 and 87C752.

RTX-251 extends the functionality of the RTX-51 to the new inte M Ccs®251
family of processors. It isavailable as a set of runtime libraries supporting the
binary and the source mode to be used with the C251.

This user's manual assumes that the user is familiar with the programming of
8051/ MCSP 251 processors, experienced with the KEIL C51/C251 high-level
programming language, and has basic knowledge of real-time programming.

Thefollowing literature is recommended as an extensive introduction in the area of
real-time programming:

n Deitd, H.M., Operating Systems, second edition,
Addison-Wesley Publishing Company, 1990
(contains many additional literature references and is praxis-
orientated)

» Ripps, David, A Guideto Real-Time Programming, Englewood
Cliffs, N.J, Prentice Hall, 1988.

= Allworth, S.T., Introduction to Real-Time Software Design,
Springer-Verlag Inc., New York

= Richter, Lutz, Betriebssysteme,
Teubner Stuttgart, 1985 (theoretical view, german language)

m Goldsmith, Sylvia, A practical guideto Real-Time Systems
Development, Prentice Hall

Preface

Manual Organization

This user’s guideis divided into eight chapters:
» Chapter 1. Overview," provides a brief overview on RTX-51/251.

» Chapter 2: Installation,” describes the installation of RTX-51/251 and provides
an overview on the necessary software toals.

» Chapter 3: Programming Concepts,” describes the ways RTX-51/251 functions
can be used by your application and how the kerndl handles C51/C251 specific

aspects.

» Chapter 4: Programmer’s Reference,” contains a detailed listing of all RTX-
51/251 system functions including examples.

» Chapter 5: Configuration,” describes the adaptation of RTX-51/251 to various
members of the 8051/MCS” 251 processor family and the system-configurable
constants.

» Chapter 6: CAN Support,” introduces the driver software for a CAN bus
interface using different controller hardware.

» Chapter 7: BITBUS Support,” introduces the driver software for a BITBUS
interface using the intel 8044 on-chip controller.

» Chapter 8: Application Example,”“ describes as an example the software required
to contral thetraffic lights at an intersection

Vi Content

Contents

Chapter 1. OVENVIBW......cueeiiiiieeieesiee ettt 1
Summary of the Major SyStEmM FEALUIESc.eivieiiiieeee e 2
LIS USSR R PSPPI 2
INEEITUPE SYSEEM...ceie e 4
SYSEEM CIOCK. ...ttt et r e eneenne e 4
OPErating RESDUICES.......ccuviiuieiiiieieeie ettt ettt r e snesnesnneenneeas 4
Program EXaMPIE........cco ittt s 5
Example Program for a Simplified RTX-51/251 Application...........cccccevverenne. 5
Compiling and Linking the Program ..o 6
Extract from the MAP file generated by BL5L/L251cccooviiiiiiiiieeee e 7
Debugging the Prograim...........ceeiee e e 8
Chapter 2. INStallationc.ooiieiiiiieee e 11
SOftWaAre REQUITEMENTS ...ttt 11
Backing UP YOUI DiSKSccouiiiiiiieiieiieiteeieeie ettt s 11
INSLAlliNg the SOFtWAIE........eoiieie e 12
DITECIONY SLIUCIUNE ...ttt b bbb e b neas 12
Chapter 3. Programming CONCEPLS........coueruieiierierieenee e 15
Task MaANAGEMENTooiiiiiiiee e s nees 15
TASK SEALES. ... ettt sttt bttt bttt e et s ae e et e saesaeeneen 15

Task SWITCING.eiiiiiiie e e e 16

TASK ClBSSES. ...ttt st 17

TaSK DECIAIAIION ...t nees 20
INtErTUPt MaNAGEMENLcueiiiieiiie e e e 22
Methods for Interrupt Handling.........cooeeieeeiieiieeeeeeeeeeeee e 23
Handling of the 8051/MCS 251 Interrupt Enable Registerccovevvveiieenieenen. 25
Handling of the 8051/MCS 251 Interrupt Priority Registercccoovevvevieeneennen. 26
Declaration of C51/C251 Interrupt FUNCLIONS.........ccueeivieiiienieeieeieeeeeieeieee 26

Task COMMUNICALION.coueiiiiieeiee ettt nees 27
SIGNAIS ... naes 27
IMAITDOXES. ...ttt bbb bbb ne s 28
SEMAPNOIES. ...ttt 30
Dynamic Memory ManagemeNtccoueerreerieerieenieenreeseeesseesseessee s e s e sseesseesseesneas 31
Generate Memory POOIcc.ooiiiiiiieeeee s 32
Request Memory BIOCK from POOccoeiieiiiiieieieeieeeeieeee e 32
Return Memory BIOCK 10 POOL.........cc.eiiiiiiiiieiieeeeeeeeeeeeeee e 32

TIME MANAGEMENLc..eiiiie ittt aeesneenees 32
SEL TIME SHICE. ..t 33

DAY @ TASK .ttt 33

Cyclic Task ACHVALIONooiueieieiieieeitiesee e 33

SPECITiC CEL/C25L SUPPOIT......eeuveetieiieieeieeiee sttt nees 33

RTX-51/RTX-251

C51/C251 MeamMOry MOGEIS.......c.eeiieiieiie et 33
ReeNntrant FUNCLIONS.coivieiiiiieiieiee et 34
Floating-Point OPErations...........ccoueerieeiienierieesieesiee et 34
Use of the C51/C251 RUNIME LIbraryccooeeieeiienieiieeeseeseee e 35
Register Bank DEfaUIT..........cc.ooiiiiiiieiieeeeee e 36
Use of the C51 Special Library........coceoieeieeneenieniesieseesee e 36
Code BankSWItChiNGcocviiiiiii e 37
Chapter 4. Programmer’S REFENENCeooviviieiiiiieeeeeeee e 39
NAIME CONVENTIONSeiutieitietietiei ettt b e beesaeesaeesneesaeenees 39
REUM VAIUES ... 40
INCLUDE FlES.....cueiiiie ettt sttt sttt st e et s 40
OVEIVIEIN ..ottt et e h e h e ae e st e st ese e e st e sae e sae e eaneseeennnenees 40
Initialize and Start the SYSteM..........ooiiie e 42
FUNCLION Call OVENVIEW ... 42
TasSK MaANAGEMENTcoeiiiieieee ettt r e r e e reenesaneea 45
FUNCLION Call OVENVIEW ... 45
INtETUPt MaNAGJEMENL.........ooiiie e 50
FUNCLION Call OVENVIEW ... e 50
WIT FUNCLION ...ttt neas 64
FUNCLION Call OVENVIEW ... e 64
SIgNal FUNCLIONS ... et 70
FUNCLION Call OVENVIEW ... 70

M ESSAgE FUNCLIONS ...ttt nnes 74
FUNCLION Call OVENVIEW ... e 74
SEMAPNOTE FUNCLIONSoiiiiie e 81
FUNCLION Call OVENVIEW ... 81
MemOry MaNAQEIMENLcccueiiiiieiiieir e snee e 83
FUNCLION Call OVENVIEW ... e 83
Examplefor a Buffer Pool AppliCation............ccoeereerierienienieneesee e 83
Management of the SyStem ClOCK..........coieiiiiierieeeeee s 91
FUNCLION Call OVENVIEW ... e 91
DEDUG FUNCLIONS ...ttt 93
FUNCLION Call OVENVIEW ... 93
Chapter 5. CoNfigUIrationceeieiiiieiienie e 109
Graphical Configuration ULIliTyccveiieiieiieeeeeeeeeeeeeeeee e 109
Running the Configuration ULIlIty...........cociiieiiiiieeeeeeeee e 110
Configuration OPLIONSeeveeteerieteereere ettt sb st sse s e s eseeenneas 111
Memory AssignmENt fOr RTX-5L.....cccuiiiiiiiiiiieeieeeee e 116
Direct-Addressable Internal Memory (DATA) ..o 116
Indirect-Addressable Internal Memory (IDATA).....cooiiiiriieieeeee e 117
External Memory (XDATA) ..ottt 119
Memory Assignment for RTX-251ooiiiiiiiiiieeieeee e 121
Direct-Addressable Internal Memory (DATA) ..o 121

Direct-Addressable External Memory (EDATA)oooiiiiiiieieeieeieeeeeeeeene 121

Viii Content

External Memory (XDATA) . ..c.co it 124
Summary of the User-Configurable ValUesocooeiiiiinic i 126
Number of the Processor TYPeUSE.cociiiiiiiiieiie s 128

Chapter 6. CAN SUPPOIT......oiiieiieiieiie et 131
IEFOOUCTION ...t eees 131
LO7010107= o PR PR PR 133
APPLICELION TNEEITACE ...t 135

FUNCLION Call OVENVIEW ... e e 136

Function Call DESCIIPLION.ciiiiiiiie e 138
CONTIGUIBLION ...ttt e r e sr e r e s neenneenneen 179

Hardware REQUITEIMENESoouiiiiiiieie et 179

ConfigUIration FilES.........oouiiiiiieceee e 179

Memory/System REQUIFEMENLSooiiiieiie e 181

Adapting StACK SIZES........coiuiiiieiieeeee e s 181

Linking RTXCAN/XSL ..ottt 181
REIUM VAIUES ... e s 183
TIMING / TNITAIIZAION.eieeeeeceeee e 184

QUICK SEAT....eeeeiee ettt ettt st e et e e et e e sneeesnteesneeeneeenns 184

Bt THMING .ottt 186

Sample Point Configuration REQUIFEMENLScocuerieriieiiieeieee e 190

INtel 82526 BUS TIMING.....ccviiiiiieiieeie et s 190

INtel 82527 BUS TIMING.....ccuviiiieiiiiieiie et 195

Siemens 81C90/91 BUS TIMINGverurerrerieeieeieeee e sre e sre e ens 201

Philips 82C200/80C592 BUS TiMINGccveiieriieeieniie e 208

Siemens C515C BUS TIMING.......eiverrerieeieereete e enesne e snesneens 212
APPlication EXAMPIES........oouiiieiieieeeeee et 215
FIleS DEIIVEIEU. ..o e e 235

Chapter 7. BITBUS SUPPOrt (RTX-51) ..coeviviieiiieiiiieeiee e 237
IEFOOUCTION ... nees 237

ADBDIEVIBLIONS ... 238

LO7010107= o SR P ST R OPPPTOPRPPR 239

REQUIFEMENES ... s 242
BITBUS SEANUAIT........cceeiieiieeeeeee e e e 243
APPLICELTION TNEEITACE ...t 243

Structure of the Message BUFEcocviiiiiieieeeeeeee e 244

Transfer Of MESSAgES.couiiieeiieieeee e 246

RECEIPL Of MESSAgES ...t 247

INITAITESALTON ... 248

APPlication EXAMPIESccuiiiieiieeeee e s 249

Remote Access and Control FUNctions (RAC)........oocvvieiienieieesee e 251

OUutStaNdiNG RESPONSES.......ccviiiiiriereere ettt ettt n e snesneeas 251

Error Hanaling......coove oo 252

(=R DI TAVL= €= o FETT T R 252

RTX-51/RTX-251

Chapter 8. Application EXamMPIe........c.cocoieiiiiiiiiieiic e 255
OVEIVIEIN ...ttt ettt ettt b et b e et e et e e bt et e et e e bt e beeneeneenean 255
Example Program TRAFFIC2 ..ot 255

PrinCiple Of OPEralioN.........ccceiiieiieiieeeee e 256
Traffic Light Controller Commands...........coceeieeiienieneeniereesee e 258
SOFTWEAIE ...ttt ettt ettt b e bbbt e b e e b e enneas 258
TRAFFIC2.C ...ttt bbb bt 260
SERIAL.C ..t ettt bbb e 267
GETLINE.C ..ottt sttt bbb 269
Compiling and Linking TRAFFIC2c..ooiiiiieieeeeeee e 270
Testing and Debugging TRAFFICZ ... 270
GlOSSANY ...ttt 272

RTX-51/RTX-251

Chapter 1. Overview

There are two fundamental problems of many modern microprocessor

applications:

m A task must be executed within a relatively short time frame.

m Several tasks aretime- and logic independent from one another and should

System ISR's

System Tasks

RTX Kernel

__—

User Tasks

User ISR's

Figure 1: Overview
8051/MCS 251 processor family.

therefore execute simultaneously on a
processor.

Thefirst itemisalsoreferredtoasa
requirement for guaranteed response
times, also designated as "real-time'".
The second item designates the typical
situation of multi-program operation
(multiprogramming, multi-tasking). In
this case, the individual tasks are
organized as independent computer
processes (normally designated as a
"task").

The RTX-51/251 Real-Time
Multitasking Executive contains the
functions to solve these types of
problem definitions in a simple and
effective way with all processors of the

The sequence control required for simple applications could, of course, be
implemented by the user himsdlf. This, however, is not very efficient, sincealarge
part of the functions which a multitasking executive already offers would have to

be re-implemented.

Advantages in using a Real-Time Multitasking Executive:

m A program can be more easily implemented, tested and maintained by breaking
down the problem to be solved into individual, easily comprehensible tasks.

m Themodular approach allows individual tasks to be used in other projects.

= Since the real-time and multitasking problems which occur are already solved
thetimerequired for creating programs and testing is considerably reduced.

2 Overview

Advantages of RTX-51/251 are:

m Simpleuse of RTX-51/251 by integration in the Kell C51/C251 devel opment
System.

m Complete support of all C51/C251 features such as floating-point operations,
re-entrant functions and interrupt functions.

m User-friendly configuration of RTX-51/251 for all members of the 8051/MCS
251 family.

m Flexibility - only requires afew system resources and can also be applied for
time-critical applications.

Summary of the Major System Features

Tasks
RTX-51 (see section below for RTX-251) recognizes two classes of tasks:

m Fast tasks with especially short responses and interrupt times. Each fast task
uses an individual register bank of the 8051 and contains its own stack area.
RTX-51 supports a maximum of three fast tasks active at a time.

m Standard tasks that require somewhat more time for the task switching,
therefore less internal memory than the fast tasks. All standard tasks sharea
register bank and a stack area; during a task change the current contents of
registers and the stack are stored in the external RAM. RTX-51 supports a
maximum of 16 standard tasks active at atime.

RTX-251 recognizes two classes of tasks:

m Fast tasks with especially short response and interrupt times. Fast tasks use
context storage located in on-chip RAM for fastest access. RTX-251 supports
amaximum of 16 tasks of fast or standard type active at atime. A lower limit
may be set for fast tasks by the amount of available on-chip RAM.

m Standard tasks require somewhat more time for the task switching, because
their context storage is located in slower external RAM. RTX-251 supports a
maximum of 16 tasks of fast or standard type active at atime.

RTX-51/RTX-251 3

RTX-51/251 tasks are declared as parameterless C functions with the attribute
ll_ta§(_lll

Task Communication and Synchronisation

RTX-51/251 provides two mechanisms so that the individual tasks can
communicate with each other and synchronize tasks which normally execute
independent of one another:

= Signals arethe fastest form of task synchronisation. No actual informationis
exchanged - only a stimulus is activated for a task.

m Messages are exchanged via so-called mailboxes. Mailboxes allow the
buffered exchange of data. Tasks can be entered in queues for thesein order to
wait for a message to bereceived. Theindividual messages are managed by
the mailbox according to the FIFO principle (First-In, First-Out). If several
tasks are waiting for a message to be received, the task which is waiting the
longest (first in the queue) receives the message.

= Semaphores are simple protocol mechanisms that share common resources
without access conflicts. By use of token's resources may be managed in such
away that only onetask at atimeis allowed to use them. If more than one task
requests access to a resource, then the first task will be granted access, while
the second task is put on awaiting list until the first task finishes its operations
on this resource.

Task Switching

RTX-51/251 contains an event-driven task switching mechanism that switches
tasks according to their priority (preemptive multitasking). An additional task
switching mechanism which switches according to the time-slice mode can be
optionally used (round-robin scheduling).

RTX-51/251 recognizes four priority levels; priorities 0, 1 and 2 can be assigned
to standard tasks. Priority 3 isreserved for fast tasks.

The individual tasks can wait for various events to occur without requiring
processor time (no processor burdening). Events can be characterized as the
receipt of messages, signals, interrupts and time-outs, or a combination of these.

Three wait forms are supported:

= Normal: the WAITING (BLOCKED) task can be blocked for an arbitrary
amount of time until the corresponding event occurs.

Overview

m Conditional: the waiting task is never blocked, the task can recognizeif the
corresponding event existed by evaluating the return value.

m With time-out: thetask is blocked for a certain timeif the corresponding event
does not occur.

Interrupt System

RTX-51/251 performs task synchronisation for external events by means of the
interrupt system. Two types of interrupt processing are basically supported in this
case:

1. C51/C251 Interrupt Functions
Interrupts are processed by C51/C251 interrupt functions.

2. Task Interrupts
Interrupts are processed by fast or standard tasks of RTX-51/251.

The methods of interrupt processing can be selected depending on the application.
The individual methods can also be combined in an application.

System Clock

The RTX-51/251 system clock is based on hardware Timer O or 1 (can be
configured) of the 8051/MCS 251 processor. It supplies the basic pulse (clock
frequency) required for the time-outs and for the round-robin scheduling.

Operating Resources

RTX-51 (see section below for RTX-251) requires the following 8051 system
resour ces:

m CODE Memory:
Approx. 6 to 8 Kbytes, depending on the function scope used.

= Interna (DATA and IDATA) RAM:
40 to 46 bytes for system data (depending on the selected processor type).
20 to 200 bytes for the stack (can be configured by the user).

RTX-51/RTX-251 5

Register bank O for standard tasks; register banks 1, 2 and 3 for fast tasks or
C51 interrupt functions.

m External (XDATA) RAM:
Minimal 450 bytes.

m Timer O or 1 for the system clock (can be configured by the user).

RTX-251 (see section above for RTX-51) requires the following MCS 251 system
resources:

m CODE Memory:
Approx. 3 to 7 Kbytes, depending on the function scope used.

= Internal (DATA and IDATA) RAM:
28 t0 32 bytes for system data (depending on the selected processor type).

m External (EDATA) RAM:
32 bytes for system data.
64 bytes up (max 64 Kbytes) for task system and reentrant stack data and
context storage.

m External (XDATA) RAM:
Minimal 450 bytes.

m Timer O or 1 for the system clock (can be configured by the user).

Program Example

The following simplified example illustrates the basic design of a RTX-51/251
application and the procedure for compiling and linking:

Example Program for a Simplified RTX-51/251
Application

#pragnma | arge

#i ncl ude "rtx51. h" /* RTX-51 definitions */

/* NOTE: use rtx251.h for RTX-251 */
#defi ne PRODUCER_NBR O /* Task nunber for the producer task */
#defi ne CONSUVMER_ NBR 1 /* Task nunber for the consuner task */

voi d producer_task (void) _task_PRODUCER_NBR
{

unsi gned i nt send_nes;

6 Overview

os_create_task (CONSUMER _NBR); /* Create the consunmer task */
send_nes = 1;

for (;;) { /* end-less | oop */
/* Send actual value of "send_mes" to the nmilbox 0 */
/* If the mailbox is full, wait until there is room */

/* for the message */
os_send_nessage (0, send_nes, Oxff);
send_nes++;

}
}
voi d consumer_task (void) _task_ CONSUMER NBR _priority_ 1
{
unsi gned int rec_nes;
for (;;) {
/* Read fromthe mailbox O to the variable "rec_nmes" */
/* Wait for a nessage if the mailbox is enpty */
os_wait (K_MBX+0, Oxff, &rec_nes);
/*
. Perform sone cal cul ations with "rec_nes"
*/
}
}

void main (void)

/* Initialize the systemand start the producer task */
os_start_syst em (PRODUCER_NBR) ;
}

Compiling and Linking the Program

The most convenient way is to use mVision-51/251 for this purpose. A project
definition file named SAMPLE.PRJ contains all required settings and
automatically identifies all required files. Use‘Open project’ from the ‘ Project’
menu to select thisfile. SAMPLE.PRJ can be found in the sub-directory RTX51
(for RTX-51) or RTX251 (for RTX-251) in the C51/C251 tools directory.

By use of the‘Make: Build project’ selection out of the ‘Project’ menu the sample
program is compiled and linked in one step.

RTX-51/RTX-251

Extract from the MAP file generated by
BL51/L251

BL51/L 251 generates atask list which lists all tasks defined in the system along
with their identification number, the defined priority and the register bank used

RTX-51:

MS- DOS BL51 BANKED LI NKER/ LOCATER V3. 11, | NVOKED BY:
BL51. EXE SAMPLE. OBJ, RTXCONF. OBJ RTX51

MEMORY MODEL: LARGE
I NPUT MODULES | NCLUDED:

SAMPLE. OBJ (SAMPLE)
RTXCONF. OBJ (?RTX?CONFI GURATI ON)

:\ C51\ LI B\ RTX51.
:\ C51\ LI B\ RTX51.
:\ C51\ LI B\ RTX51.
:\ C51\ LI B\ RTX51.
:\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.
\ C51\ LI B\ RTX51.

LIB (RTXI NI T)
LI B (RTXDATA)
LI B (RTXCLK)
LI B (RTXCREA)
LI B (RTXI NT)
LI B (RTXWAI T)
LI B (RTXSEND)
LIB (RTX51_LIB____ VERSI ON_0V500)
LI B (RTXBLOCK)
LI B (RTXDI SP)
LI B (RTXQUOP)
LI B (RTXI HAND)

:\ C51\ LI B\ RTX51. LI B (RTXI NS)
:\ C51\ LI B\ RTX51. LI B (RTX2C51)
:\ C51\ LI B\ C51L. LI B (?C_STARTUP)

00000000000 O0OO0

TASK TABLE OF MODULE: SAMPLE (SAMPLE)

TASKID PRIORITY REG BANK SEGVENT NAME

0 0 0 ?PR?PRODUCER TASK?SAMPLE
1 1 0 ?PR?CONSUMER TASK?SAMPLE
RTX-251:

DOS LI NKER/ LOCATER L251 V1.10, | NVOKED BY:
C:\ C251\ Bl M\ L251. EXE SAMPLE. OBJ, RTXCONF. OBJ RTX251

CPU MODE: Bl NARY MODE
I NTR FRAME: 4 BYTES SAVED ON | NTERRUPT
MEMORY MODEL: LARGE

| NPUT MODULES | NCLUDED:
SAMPLE. OBJ (SAMPLE)
COWENT TYPE 0: C251 V1.10

1

Overview

RTXCONF. OBJ (?RTX?CONFI GURATI ON)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXI NI T)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXDATA)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXCLK)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXSNDM)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXCREA)
COWENT TYPE 0: A251 Vi.10
C:\ G251\ LI B\ RTX251BD. LI B (RTXI NT)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXWAI T)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXI HNDM)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTX251_LIB____ VERS| ON_0V100)
COWENT TYPE 0: A251 V1.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXBLOCK)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXDI SP)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXQUOP)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXI HNDS)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ RTX251BD. LI B (RTXI NS)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ C251BL. LI B (?C_START)
COWENT TYPE 0: A251 Vi.10
C:\ C251\ LI B\ C251BL. LI B (?C_I NI T)
COWENT TYPE 0: A251 Vi.10

TASK TABLE OF MODULE: SAMPLE (SAMPLE)

TASKID PRIORITY SEGVENT NAME

0 0 ?PR?PRODUCER_TASK?SAMPLE
1 1 ?PR? CONSUMER_TASK?SAMPLE

Debugging the Program

The dScope debugger is started automatically upon completion of thelink step. A
predefined dScope initialization file (SAMPLE.INI) is used to set breakpoints
inside of the two tasks and to define two watch variables.

The application code and an include file named DBG_RTX.INC areloaded. This
file contains declarations of dScope macros to support debugging of RTX-
51/251 code. The defined macros may be called as follows:

RTX-51/RTX-251

m With thekey <F3> atable of all declared tasks may be displayed. It shows
some important information about them and the associated task states.

ID | Start | Prio | State | Blocked for Event | Mbhx./Sem | Timer | Signal
a Aa32H a RUNNIHNG a
4 A14AH 1 BLOCHKED TEN 9 a
5 A164H a READY a
1 AaA7H 1 BLOCKED MSG a a
2 | @OFDH 3 BLOCKED | TKN 9]
3 | 8117 3 BLOCKED | THMO ? g

ID Task number, as defined in the task-declaration.
Start Task start address.
Prio Task priority.
State Actual task state.

Blocked for Event

Defines for which event thetask is blocked

(the task is waiting for).
Event codes used here are:

MSG:
INT:
SIG:

TMO:
WRITE-

MAILBOX:

TKN:

M bx/Sem:

Timer

Signal:

wait for message (mailbox read)
wait for interrupt

wait for signal

wait for time-out

wait until enough space in message
list of mailbox (mailbox write)

wait for a token (from a semaphore)
When thetask is blocked for a
mailbox read/write, then this fied
shows the mailbox number [0..7].
When thetask is blocked for a
semaphore, then this field shows the
semaphore number [8..15].

When thetask is blocked for atime-
out, then this field shows the
remaining number of system ticks to
time-out

State of task signal flag (1=s«t,
O=reset)

m With thekey <F4> alist of all pre-defined mailboxes may be displayed.

10 Overview

Mhx | Msg | Read | Write Messages
a a 1 a
1 3 a a A881H.-1280H.-34FFH
2 1 a a SEBAH
3 a a a
4 a a a
5 a a a
] a a a
7 a a a
Mbx Mailbox number [0..7].
Msg Number of messages in this mailbox.
Read Number of tasks which are blocked for reading a
message.
Write Number of task which are blocked for writing a
message.
M essages Shows the messages contained in the mailbox.

m With thekey <F5> alist of al pre-defined semaphores may be displayed.

sen | Thn | Wait
8 8 a
9 8 3
1@ 8 1
11 1 a
12 8 1
13 8 a
14 8 a
15 1 8
Sem Semaphore number [8..15].
Tkn State of token flag (1=token available; O=else).

Wait Number of tasks which are blocked for a token.

RTX-51/RTX-251 11

Chapter 2. Installation

This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you must
do the following:

m Veify that your computer system meets the minimum requirements.

m Make a copy of theinstallation diskette for backup purposes.

Software Requirements

Thefollowing products are required to use RTX-51/251 together with Kell
C51/C251:

RTX-51:

C51 Compiler Version 5.02 or later

BL51 Linker for Code-Banking Version 3.52 or later
A51 Assembler Version 5.02 or later

RTX-51 Real-Time Executive Version 5.10 or later

RTX-251:

m C251 Compiler Version 1.20 or later

m L1251 Linker Version 1.20 or later

m A251 Assembler Version 1.20 or later

m RTX-251 Real-Time Executive Version 1.0 or later

Backing Up Your Disks

We strongly suggest that you make a backup copy of the installation diskettes
using the DOS COPY or DISKCOPY commands. Then, use the backup disks to
install the software. Be sureto storethe original disks in a safe place in case your
backups are lost or damaged.

12 Installation

Installing the Software

RTX-51/251 come with an installation program which allows easy installation
under MS-WINDOWS.

Thefollowing versions are supported:

s MS'WINDOWS Version 3.1

s MSWINDOWS Version 3.11

m MSWINDOWS 95 or later

m MS'WINDOWS NT Version 3.5 or later

Toinstall RTX-51/RTX-251 ...

Insert thefirst product disketteinto Drive A,

Sdlect the Run... command from the File menu in the Program Manager,
Enter A:SETUP at the Command L ine prompt,

Sedlect the OK button

Then, follow theinstructions displayed by theinstallation program.

NOTE:

= Under Windows 95 or NT a dlightly different procedure may be required.
m The PK51/PK251 product must beinstalled before installing RTX-51/251.

Directory Structure

The installation program copies the RTX-51/251 files into sub-directories of the
PK51/PK 251 base directories.

After creating the appropriate directory (if required), the installation program
copies thefiles into the sub-directories listed in the following table.

RTX-51/RTX-251 13

Subdirectory Description
..\BIN Executable files (configuration utility).
..\RTX51 RTX-51 configuration files, sample applications.
...\RTX251 RTX-251 configuration files, sample applications.
..\CAN CAN support
..\BITBUS BITBUS support
.AINC C include files.
..\LIB Library files.

This table shows a completeinstallation. Y our installation may vary depending on
the products you installed.

RTX-51/RTX-251 15

Chapter 3. Programming Concepts

Task Management

The main function of tasks within a Real-Time Multitasking Executiveis the time-
critical processing of external or internal events. A priority can be assigned to the
individual tasks to differentiate between which are most important. In this case,
value 3 corresponds to the highest priority and value O corresponds to the lowest
priority.

RTX-51/251 always assigns the READY task with the highest priority to the
processor. This task only maintains control over the processor until another task
with a higher priority is ready for execution, or until the task itself surrenders the
processor again (preemptive multitasking).

If several READY tasks exist with the priority 0, a task switching can optionally
occur after completion of a time slice (round-robin scheduling).

Use the following guideline when assigning task priorities:

The application should work error freeregardlesstask priorities. The
priorities only serve for time optimizing.

Task States
RTX-51/251 recognizes four task states:

READY All tasks which can run are READY. One of
these tasks is the RUNNING (ACTIVE) task.

RUNNING (ACTIVE) Task which is currently being executed by the
processor. Only onetask (maximum) can be
in this state at a time.

BLOCKED (WAITING) Task waits for an event.

SLEEPING All tasks which were not started or which
have terminated themsaves arein this state.

16 Programming Concepts

An event may be the reaching of a period of time, the sending of a message or
signal, or the occurrence of an interrupt. These types of events can lead to state
changes of the tasks involved; this, on the other hand, can produce a task
switching (task change, task switch).

The states "READY", "RUNNING" and "BLOCKED" are called active task
states, since they can only be accepted by tasks which were started by the user (see
system function "os_create task"). "SLEEPING" is an inactivetask state. Itis
accepted from all tasks which were declared but still have not been started.

Event for task occurs.

Task has lower priority than
running task: it is inserted in
list of ready tasks.

Processor is released by
running task which starts
waiting for an event.
Highest priority ready
task starts running.

Event for task with higher
priority occurs. It preempts
running task, which is
inserted in list of ready
tasks.

Event for task occurs, which has higher
priority than running task: it preempts it.

&
~

5 | BLOCKED
7

Task starts waiting for an event. Processor is
assigned to next ready task.

Figure 2: Task Sates

The figure shows the three active task states and their interaction.

Task Switching

The RTX-51/251 system section which the processors assigns to the individual
tasksis referred to as the scheduler (also dispatcher).

The RTX-51/251 scheduler works according to the following rules:

RTX-51/RTX-251 17

m Thetask with the highest priority of all tasksin the READY stateis executed.

m |f several tasks of the same priority arein the READY state, the task thay has
been ready the longest will be the next to execute.

m Task switchings are only executed if the first rule would have been otherwise
violated (exception: round-robin scheduling).

Theserules are strictly adhered to and never violated at any time. Assoonasa
task yields a state change, RTX-51/251 checks whether a task changeis necessary
based on the scheduling rules. Time-slice task change (round-robin scheduling)
are executed if the following conditions are satisfied:

m Round-robin scheduling must be enabled (see configuration).

m The RUNNING task has the priority of 0 and is currently not executing a
floating-point operation (see section "Floating-Point Operations’, page 34).

m At least onetask with the priority zero must beinthe READY state.
m Thelast task change must have occurred after the selected system timeinterval

(see system function "os_set_dlice"). The system timeinterval can be changed
dynamically during program execution.

The operating mode preferred by RTX-51/251 is the preemptive scheduling. |If
desired by the user, the tasks with the priority zero can additionally be managed by
means of the round-robin scheduling.

Task Classes

RTX-51 (see section below for RTX-251) basically recognizes two classes of
tasks:

RTX-51 Fast Tasks

m Contain especially short responses and interrupt disable times.

m Contain a separate register bank and a separate stack area (register banks 1, 2
and 3).

m Contain the highest task priority (priority 3) and can therefore interrupt
standard tasks.

= All contain the same priority and can therefore not be mutually interrupted.
m Can beinterrupted by C51 interrupt functions.

18 Programming Concepts

= A maximum of threefast tasks can be activein the system.

Internal RAM External RAM

Stack-Area for

Normal-Tasks

Stack-Area for

Fast-Task 3

Stack-Area for

Fast-Task 2

Stack-Area for

Fast-Task 1
Normal-Task
context

Registerbank 3 for
Fast-Task 3

Normal-Task
Registerbank 2 for context
Fast-Task 2
Registerbank 1 for
Fast-Task 1

Normal-Task
Registerbank 0 for context

Normal-Tasks

Figure 3: RTX-51 Task Classes and Memory Allocation
RTX-51 Standard Tasks

m Require somewhat more time for the task switching compared to fast tasks.
m Share a common register bank and a common stack area (register bank 0).

= The current contents of registers and stack are stored in the external (XDATA)
memory during a task change.

m Can beinterrupted by fast tasks.

m Caninterrupt themseves mutually.

m Can beinterrupt by C51 interrupt functions.

= A maximum 16 standard tasks can be active in the system.

RTX-51/RTX-251 19

Each RTX-51 standard task contains a context area in the external memory.
During a task change with standard tasks, all required registers of the running task
and of the standard task stack are stored in the corresponding context area.
Afterwards, the registers and the standard task stack are reloaded from the context
area of the task to be started (swapping).

In the case of RTX-51 fast tasks, a task change occurs considerably faster than for
standard tasks, since each fast task has a separate register bank and a separate
stack area. During atask changeto a fast task, only the active register bank and
the current stack pointer value must be changed.

RTX-251 (see section above for RTX-51) basically recognizes two classes of
tasks:

RTX-251 Fast Tasks

m Contain short responses.
m Contain a context save area located in on-chip RAM for fastest access.

m Contain the highest task priority (priority 3) and can therefore interrupt
standard tasks.

= All contain the same priority and can therefore not be mutually interrupted.
m Can beinterrupted by C251 interrupt functions.

m The maximum number of fast tasksis limited by the maximum number of
active tasks in the system (16) and the available on-chip RAM for context
storage.

RTX-251 Standard Tasks

m Require somewhat more time for the task switching compared to fast tasks.
m Contain a context save area located in off-chip direct RAM.

m Can beinterrupted by fast tasks.

= Caninterrupt themseves mutually.

m Can beinterrupted by C251 interrupt functions.

= A maximum 16 standard and fast tasks can be active in the system.

20 Programming Concepts

Each RTX-251 task contains a context area in the external memory. During a
task change all required registers of the running task are stored in the
corresponding context area. Afterwards, the registers are reloaded from the
context area of the task to be started (swapping). Each task has its own private
stack area inside of its context save area, therefore no stack swapping is required.
Additionally each task has its own private reentrant stack area as part of its
context save ares, if any reentrant functions are declared in the system.

In the case of RTX-251 fast tasks, atask change occurs faster than for standard
tasks, since the context save areas of all fast tasks are automatically located in on-
chip RAM (faster access).

Task Declaration

C51/251 provides an extended function declaration for defining tasks.
A task is declared as follows:

void func (void) [nodel] _task_ <taskno> [_priority_ <prio>]

m Tasks cannot return a value (return type "void").
m No parameter values can be passed to tasks ("void" in parameter list).

m <taskno> is a humber assigned by the user in therange 0...255. Each task
must be assigned a unique number. This task number is required in RTX-
51/251 system function calls for identifying atask. A maximum of 256 tasks
can bedefined. However, only 19 (RTX-51) or 16 (RTX-251) tasks can be
active at the same time.

Note: If the XDATA memory requirement of RTX-51/251 isto be
minimized, the tasks must be numbered sequentially beginning with the
number O.

m <prio> determines the priority of thetask. The value O corresponds to the

lowest possible priority, value 3 corresponds to the highest possible priority.
The priorities define implicitly the task class:

- Standard tasks: Priorities 0, 1 and 2
- Fast tasks: Priority 3

If no priority is specified, RTX-51/251 uses the task priority O.

RTX-51/RTX-251 21

m RTX-51 standard tasks must be compiled for register bank 0 which isthe
default value of the C51 compiler. RTX-51 fast tasks must be compiled for
register banks 1, 2 or 3. This must be guaranteed using the directive "#pragma
REGISTERBANK (x)" (wherex =1, 2, 3). If thisruleisviolated, C51/BL51
generates an error message.

No special compiler directives are required for RTX-251 standard and fast
tasks.

Example 1: Standard task with task number 8 and priority O
voi d exanple_1 (void) _task_ 8 _priority_ 0O

or
voi d exanple_1 (void) _task_ 8

Example 2: Fast task with task number 134 and register bank 1 (Note:
registerbank declarations are required for RTX-51 only)

#pragm REG STERBANK (1)
voi d exanple_2 (void) _task_ 134 _priority_ 3

m Example of typical task layouts:

22

Programming Concepts

Initialisation

Initialisation

) Function to be
Function to be performed
performed once
once for each '
event.

System call:
delete itself
System call:
wait for event

Figure 4: Typical Task Layouts

Task 1 shown in the figure above has to perform a certain action each time
an event occurs. Such an event may be a received message, a signal or a
time-out, just to mention a few.

After completing its action it will start to wait for a new event. In thisway
the task will not consume time just waiting for the next event.

Task 2 shown in the figure above has to perform just one specific action. It
will ddeteitsdf after completing itsjob. Such atask may be, for example, a
sdf test, which has to be executed once at power-up. It is often desirableto
write such a sdlf test routine as a separate task, than packing it in a routine,

Interrupt Management

The management and processing of hardware interrupts is one of the mgjor jobs of
a Real-Time Multitasking Executive. RTX-51/251 provides various types of
interrupt handling. The usage depends on the application requirements.

RTX-51/RTX-251 23

Methods for Interrupt Handling

RTX-51/251 provides two different methods for handling interrupts. One of the
two methods can be additionally divided into two sub-classes:

(1) C51/C251 Interrupt functions

(2) RTX-51/251 task interrupts:
Fast task interrupts
Standard task interrupts

Method (1) corresponds to the standard C51/C251 interrupt functions which can
even be used without RTX-51/251 (also referred to as ISR, Interrupt Service
Routine). When an interrupt occurs, a jump is made to the corresponding
interrupt function directly and independent of the currently running task. The
interrupt is processed outside of RTX-51/251 and therefore independent of the
task scheduling rules.

With method (2), afast or standard task is used to handle an interrupt. As soon as
thisinterrupt occurs, the WAITING (BLOCKED) task is made READY and
started according to the task scheduling rules. This type of interrupt processing is
completely integrated in RTX-51/251. A hardware interrupt is handled identical
to the receipt of a message or a signal (normal event within RTX-51/251).

The possible methods to handle interrupts have specific advantages and
disadvantages, as described in greater detail in the following section. One of the
methods can be sdected depending on the requirements of the interrupt source and
the application. The methods can be combined in any form within a program.

The following summary illustrates the special features of the individual methods
for handling interrupts:

Method C51 Interrupt Fast Task Standard Task
Function (ISR)
Interrupt Response very fast fast slow (RTX-51),
Time medium (RTX-251)
Interrupts Disabled very short, critical system all system functions,
During system functions functions, fast tasks
other fast tasks
Interruptable With - ISR ISR,
fast tasks,
standard tasks with
higher priority

24 Programming Concepts

System Resources many many (RTX-51) few (RTX-51)
Used (stack and usually extra (stack and extra register (stack and register bank
register bank) bank), is shared with other
few (RTX-251) standard tasks),
(on-chip RAM for few (RTX-251)
context save) (off-chip RAM for
context save)
Interrupt Assignment static dynamic dynamic
(only one interrupt (multiple interrupt (multiple interrupt
source per ISR) sources per task sources per task
allowed) allowed)
Allowed RTX-51/251 some special all all
System Calls

There are considerable differences in timing between the different methods. Please
refer to timing specifications for more details.

The following points of emphasis deal with the features of the individual methods
for handling interrupts mentioned above:

m C51/251 Interrupt Functions

Very sudden, periodically occurring interrupts without large coupling with the
rest of the system (only infrequent communication with RTX-51/251 tasks,
€c.).

Very important interrupts which must be served immediately independent of the
current system state.

m Fast Task Interrupts

Important or periodic interrupts which must heavily communicate with the rest
of the system when they occur.

m Standard Task Interrupts
Only seldom occurring interrupts which must not be served immediately.

RTX-51 shows considerable different response times for fast and standard tasks.
RTX-251 on the other side shows a superior performance based on the advanced
MCS 251 architecture. However the benefits in faster response times using fast
tasks compared with standard tasks may be small, especially if fast external RAM
is used.

RTX-51/RTX-251

25

Handling of the 8051/MCS 251 Interrupt Enable
Register

RTX-51/251 must have sole control over the Interrupt Enable register of the
8051/MCS 251 in order to adhere to the dispatcher rules and guarantee error-free
execution of interrupt functions.

The INTERRUPT ENABLE registers of the 8051/M CS 251 are managed by
RTX-51/251 and must not be directly manipulated by the user!

RTX-51/251 controls the INTERRUPT ENABLE bits of the 8051/MCS 251
according to the following rules:

ISR interrupts can interrupt all tasks and system functions at any time. The
ISR interrupts are disabled only during a few very short system code
Sequences.

The ISR interrupts can be disabled and enabled at the user's option using two
system functions (see "os_enable isr" and "os_disable isr).

Interrupt sources assigned to atask are only enabled if thetask is actually
waiting for an interrupt to occur. This prevents unexpected interrupts from
occurring in the system.

If the running task is a RTX-51 fast task, all RTX-51 task interrupts are
disabled (not ISR interrupts, however). A rdatively unimportant interrupt
therefore cannot interrupt the fast tasks.

RTX-251 uses a more rdlaxed rule: task interrupts are accepted anywhere
outside of system code, but a preemption takes place only, if the interrupt task
has a higher execution priority than the running task.

If the running task is a RTX-51 standard task or any RTX-251 task, it can be
interrupted by all interrupts which occur. If another RTX-51 standard task or
any RTX-251 task is waiting for one of these occurring interrupts, it is made
READY by RTX-51/251. However, it is only allocated to the processor if it

contains a higher priority than the currently running task (standard scheduling).

All RTX-51 standard task or any RTX-251 task interrupts are disabled during
the execution of system functions.

The system clock interrupt (hardware Timer O or 1) is handled the same as for
afast task interrupt.

26

Programming Concepts

Handling of the 8051/MCS 251 Interrupt Priority
Register

The Interrupt Priority registers of the 8051/MCS 251 (not to be confused with the
software task priorities) are not influenced by RTX-51/251. Even in normal
operation (all interrupts at the same hardware priority), RTX-51/251 ensures that
ISR interrupts are handled with preference. If desired, however, the ISR interrupts
of the application can be set to a higher interrupt priority. RTX-51/251 does not
provide any operations for the management of the Interrupt Priority registers.

All RTX-51/251 task interrupts must run at the same har dwar e interrupt
priority! ISR interrupts may also run on an optional har dwar e interrupt
priority. An optimal ISR processing is not guar anteed, however, if task and
ISR interrupts are set to the same hardwar e priority.

Declaration of C51/C251 Interrupt Functions

Interrupt functions are declared as follows (see also C51/C251 documentation):

void func (void) [nodel] [reentrant] interrupt n [using n]

= When interrupt functions are used, a difference must be made whether register
bank switching (using-attribute) is used or not.

= With Register Bank Switching:

When entered, the interrupt function saves the registers ACC, B, DPH, DPL
and PSW (PSW1 with C251) to the stack of the interrupted task, when
necessary. Since not all registers are stored, the user must ensure that the
interrupt function does not use a register bank used by RTX-51/251. Register
bank 0 must also not be used (reason: it is always used by RTX-51 standard
tasks or any RTX-251 task and by the system clock). Register banks 1, 2 or 3
may only be used if they are not simultaneously being used by RTX-51 fast
tasks (RTX-251 fast tasks use register bank 0).

= Without Register Bank Switching:
If no using-attribute is used, al registers required are saved on the stack. This

produces longer run times and increased stack requirement; for this purpose,
register banks used by RTX-51/251 may also be used.

RTX-51/RTX-251 27

m C51/C251 interrupt functions with using-attribute must never useregister
bank O or one of theregister banks used by a RTX-51 fast task.

m C51/C251 interrupt functions without using-attribute can be used without
any restrictions (if enough stack is available).

Task Communication

The individual tasks within a real-time system can be dependent upon each other in
various ways. These can use common data, exchange information with each other,
or coordinate the activities for solving tasks.

RTX-51/251 provides the mailbox and signal concept for handling these types of
task-related jobs.

Signals

Signals represent the simplest and fastest form of task communication. These can
always be used when a pure task synchronisation is required without data
exchange.

Each active task contains its own signal flag with which the following operations
can be executed:

= Wait for asignal

= Send signal

m Clear signd

Thetask number (see section section "Task Declaration”, page 20) of the receiver
task is used for identifying the signals for the individual operations.

Wait for a Signal

Each task can wait for its signal flag (system function "os_wait"). It waits until its
signal flagis set by another task (system function "os_send_signal”). After a
signal is received, the waiting task clearsits signal flag again and enters the task
state READY or RUNNING, depending on priority relationships.

28 Programming Concepts

If thesignal flag is already set when the task calls the wait function (when the
signal flag was previously set by another task), then it immediately receives the
signal. Thetask does not first enter the WAIT state (BLOCKED).

The waiting time for a signal can berestricted. If the specified time has expired
without receiving the signal, the waiting task is made READY again with the
return status "time-out" (see system function "os_wait", page 65).

Send Signal

Each task and each interrupt function can set the signal flag of any other task
(send a signal to thistask). Only one signal which has been sent can be stored per
task (signal flag). Aslong as atask has not received a signal, each additional
signal sent islost.

Clear Signal

A task can clear the signal flag of any other task (even its own). This allows
defined signal states in the system at any time.

Mailboxes

By means of the mailbox concept, messages can be exchanged free of conflicts
between the individual tasks.

RTX-51/251 provides a fixed number of eight mailboxes. Messages can be
exchanged in words (2 bytes) via these mailboxes. In this case, a message can
represent the actual data to be transferred or the identification of a data buffer
(defined by the user). In comparison to the signals, mailboxes are not assigned a
fixed task, but can be fredy used by all tasks and interrupt functions. These are
identified with a mailbox number.

Mailboxes allow the following operations:

m Send a message
m Read amessage

RTX-51/RTX-251 29

Mailbox Lists

Each mailbox internally consists of three wait lists. The user does not have direct
access to these lists. Knowledge of their functionsis, however, an advantage for
understanding mailbox functions.

Wait lists can comprise the following states in operation:

State Description Message List Write Wait List Read Wait List ‘
No messages, empty empty empty

no wait tasks

No messages, empty empty not empty

tasks exist that want to read

Messages exist, not empty empty empty
no wait tasks
Message list is full, full not empty empty

tasks exist that want to write

The threelists do have the following functions:

(1) Messagelist List of the messages written in the mailbox. These
comprise a maximum of eight messages.

(2) Writewait list Wait list for tasks which want to write a message in the
message list of the mailbox (maximum 16 tasks).

(3 Readwait list Wait list for tasks which want to read a message from the
message list of the mailbox (maximum 16 tasks).

All threelists are implemented as a FIFO queue (First-In, First-Out) without
priority assignment; i.e., when read, the task which waits the longest (first in the
queue) becomes the oldest messages in the mailbox.

Send a Message to a Mailbox
Each task can send a message to any arbitrary mailbox. In this case, the message

to be sent is copied in the message list. The sending task therefore has free access
to the message after the sending.

30

Programming Concepts

If the message list of the mailbox is already full during the sending, thetask is
placed in the wait state (entered in the write wait list). It remainsin the wait state
until another task fetches a message from the mailbox and, thus, provides space.
As an alternative, atime limit can also be specified for the sending after the
waiting is aborted (if the message could not be entered in the mailbox).

If the message list is not full when the sending occurs, the message is immediately
copied in the message list and the task must not wait.

Read a Message from a Mailbox

Each task can read a message from an arbitrary mailbox. 1f the message list of the
mailbox is currently empty (no

message available), the task is placed in the wait state (entered in the read wait
list).

It remains in the wait state until another task sends a message to the mailbox. As
an alternative, atimelimit can also be specified for the reading after which the
waiting is to be aborted (if no messageis available).

If the message is not empty when reading, then the reading task immediately
receives the message. It must not wait in this case.

Semaphores

By means of the semaphore concept, resources can be shared free of conflicts
between theindividual tasks.

In a multi-tasking system thereis often competition for resources. When several
tasks can use the same portion of memory, the same serial 1/0 channel or another
system resource, you have to find a way to keep the tasks out of each other's way.
The semaphoreis a protocol mechanism, which is used primarily to control access
to shared resources (mutual exclusion).

A semaphore contains a token that your code acquires to continue execution. |If
the resourceis already in use, the requesting task is blocked until the token is
returned to the semaphore by its current owner.

RTX-51/RTX-251 31

There are two types of semaphores: binary semaphores and counting semaphores.
Asits nameimplies, a binary semaphore can only take two values: zero or one
(tokenisinor out). A counting semaphore, however, allows values between zero
and 65535.

RTX-51/251 provides a fixed number of eight semaphores of the binary type.
Semaphores allow the following operations:

= Wait for token

= Return (send) token

Wait for Token

A task requesting a resource controlled by a semaphore can obtain a token from
this semaphore by a wait operation (see system function "os_wait"). If atokenis
available the task will continueits execution. Otherwise it will be blocked until
the token is available or an optional time limit is exceeded.

Send Token

After completing its operation on a resource a task will return the associated token
to the semaphore by a send function (see system function "os_send_token").

Dynamic Memory Management

Dynamic memory space is often desired in a multitasking system for generating
intermediate results or messages. The requesting and returning of individual
memory blocks should be possible within constant time limitsin a real-time
system.

Memory management, which functions with memory blocks of variable size such
as the standard C functions "malloc()" and "free()," is less suitable for this reason.

RTX-51/251 uses a simple and effective algorithm, which functions with memory
blocks of afixed size. All memory blocks of the same size are managed in a so-

called memory pool. A maximum of 16 memory pools each a different block size
can be defined. A maximum of 255 memory blocks can be managed in each pool.

32 Programming Concepts

Generate Memory Pool

The application can generate a maximum of 16 memory pools with various block
sizes. The application must provide an XDATA areafor this purpose. The pool
is stored and managed by RTX-51/251 in this area (see system function
"0s_create_pool").

Request Memory Block from Pool

As soon as a pool has been generated, the application can request memory blocks.
Theindividual pools areidentified by their block sizein this case.

If an additional block is still freein the pool, RTX-51/251 supplies the start
address of this block to the application. 1f no block isfree, a null pointer is
returned (see system function "os_get_block™).

Return Memory Block to Pool

If the application no longer needs a requested memory block, it can be returned to
the pool for additional use (see system function "os_free block™).

Time Management

RTX-51/251 maintains an internal time counter, which measures the relative time
passed since system start. The physical source of thistime baseis a hardware
timer that generates an interrupt periodically. Thetime passed between these
interrupts is called a system time slice or a system tick.

This time base is used to support time dependent services, such as pause or time-
out on a task wait.

Threetime-rdated functions are supported:

m Set systemtimeslice
m Deay atask
m Cyclic task activation

RTX-51/RTX-251 33

Set Time Slice

The period between the interrupts of the system timer sets the "granularity” of the
timebase. Thelength of this period, also called atime slice, can be set by the
application in a wide range (see system function "os_set_dlice").

Delay a Task
A task may be ddayed for a sdectable number of time slices. Upon calling this

system function the task will be blocked (sleep) until the specified number of
system ticks has passed (see system function "os_wait").

Cyclic Task Activation

For many real-time applications it is a requirement to do something on a regular
basis. A periodic task activation can be achieved by the RTX interval wait
function (see system function "os_wait"). The amount of time spent between two
execution periods of the same task is controlled, using os wait, and is measured in
number of system ticks and may be set by the application.

Specific C51/C251 Support

Apart from the use of C51/C251 interrupt functions for fast processing of
hardware interrupts, RTX-51/251 also supports the most extensions of the
C51/C251 compiler.

The following sections provide an overview on the use of C51/C251 specific
features together with RTX-51/251.

C51/C251 Memory Models

A RTX-51/251 application can use all memory model's supported by C51/C251
(SMALL, COMPACT, LARGE). However, the COMPACT modd is normally
reserved for reentrant functions (see section "Reentrant Functions" below).

34 Programming Concepts

The selected memory mode influences only the location of the application objects.
A part of the RTX-51/251 system variables is always stored in external (XDATA)
memory. All RTX-51/251 applications require external memory. Applications
without external memory are not possible.

Typical RTX-51/251 applications are normally implemented in the LARGE
modd. Variables whose access is time critical can optionally be located in internal
RAM.

Reentrant Functions

Normal C51/C251 functions must not be simultaneously used by several tasks or
interrupt functions. These functions store their parameters and local data in static
memory segments. For this reason, this data is overwritten in the case of multiple
calls.

In order to solve this problem, C51/C251 provides reentrant functions (see
C51/C251 documentation). In the case of reentrant functions, the parameters and
local data are protected against multiple calls, since a separate stack is created for
them. RTX-51/251 supports the use of reentrant functions in the COMPACT
modd. Inthis case, a separate reentrant stack whose size can be configured is
managed for each task. Interrupt functions use the reentrant stack of the
interrupted RTX-51/251 task.

m RTX-51/251 only supportsreentrant functionsin the COMPACT mode.

m Each task contains a separ ate reentrant stack configurablein size.

m Reentrant functions may be used in combination with non-reentrant
functions of the SMALL and LARGE models. Simultaneous use of
reentrant functions and non-reentrant functionsis not allowed in the
COMPACT mode!!

Floating-Point Operations

The following section is intended for users of C51 versions older than V5.0. No
special restrictions apply for other C51 and C251 users!

In principle, RTX-51 tasks can execute all types of operations with floating-point
numbers. Since the C51 floating-point library is not implemented as reentrant
(DK/PK51 versions older than V5.0), a running operation must not be interrupted

RTX-51/RTX-251 35

by another operation. In order to guarantee this, certain precautionary measures
must be assured.

No restrictions apply in the use of floating-point operations in the following two
Cases:

m Only onetask (with optional priority) in the system executes floating-point
operations. Since no other task executes floating-point operations, a running
operation cannot beinterrupted by another.

= Only tasks with the priority O execute floating-point operations. If no round-
robin scheduling is used, no problems occur since the tasks cannot mutually
interrupt. When the round-robin scheduling is used, the task change during
floating-point operations is delayed up to the end of the operation (see
scheduling rules).

If several tasks assigned to different priorities use floating-point operations, the
standard C51 functions "fpsave' and "fprestore" must be used (see C51
documentation). In this case, the present state of an interrupted floating-point
operation must be stored with "fpsave” prior to floating-point operations. After
the operation, the state must be restored again with "fprestore’ (same as using
floating-point operations in interrupt functions for C51 programs without RTX-
51). If “fpsave’ is called, then no RTX function is to be called until the function
“fprestore” is executed (i.e. no RTX functions are allowed between “fpsave’ and
“fprestore”).

m Theuse of floating-point oper ations is unproblematic only in one task or
exclusively in tasks with priority O (also with round-robin scheduling).

m Inall other cases, the standard C51 functions " fpsave" and " fprestore"
must be used. If “ fpsave" is called, then no RTX function call is allowed
unless*“ fprestore” is executed.

Use of the C51/C251 Runtime Library

No restrictions apply for all standard library functions which are reentrant (see
C51/C251 documentation).

In regard to the small number of functions which are not reentrant, the user must
ensure that these are not simultaneously used by several tasks.

36

Programming Concepts

Register Bank Default

RTX-51 (see section below for RTX-251) assigns register bank 0O to all standard
tasks. Fast tasks receive register banks 1, 2 or 3 (selectable with the "#pragma
REGISTERBANK (x)" directive).

During atask change, RTX-51 automatically seects the currently required register
bank.

RTX-51 tasks and functions used by it must not be provided with the using-
attribute (RTX-51 generatestheregister bank switching). The using-attribute
isonly permissible for C51 interrupt functions.

RTX-251 makes use of the MCS 251 register file with register bank O selected for
al tasks. C251 interrupt functions may therefore use register banks 1, 2 and 3
fredy.

Use of the C51 Special Library

C51 contains a special library for supporting the arithmetic unit and multiple data
pointers of some 8051 derivatives (80C517/537, DALLAS 80C320 and some
AMD chips).

The arithmetic unit can be used along with RTX-51. Note, however, that these
functions are not interrupt capable. For this reason, only onetask or only tasks
with the priority O may use the arithmetic unit.

Multiple data pointers are not supported by RTX-51. If special library isto be
used, the option MOD517(NODP8) must be used. Thereis only one way to take
advantage of multiple data pointers, when running RTX-51: sections using
multiple data pointers must be globally protected against interrupts. Solely under
this condition the option MOD517 (or MODAMD) is acceptable.

The C51 special library uses multiple data pointers to speed up the functions
‘memcpy’, ‘memmove’, ‘“memcmp’, ‘strepy’ and ‘stremp’. If locking out of
interrupts is not a problem concerning the interrupt response time, then a sequence
like shown beow is acceptable with RT X-51:

Examplefor Siemens 80C517(A)/537(A):

RTX-51/RTX-251 37

unsi gned i nt ol dbuf[100];
unsi gned i nt newbuf[100] ;

/* Enabl e usage of nultiple data pointers */
$pragma MOD517

/* Disable interrupts globally */

EA = 0;

/* Copy data using nultiple data pointers */
mencpy (newbuf, ol dbuf, sizeof (newbuf));

/* Re-enable interrupts globally */

EA = 1;

/* Disabl e usage of nultiple data pointers */
$pragna NOMOD517

Examplefor Dallas 80C320 and (some) AMD chips:

unsi gned i nt ol dbuf[100];
unsi gned i nt newbuf[100] ;

/* Enabl e usage of nultiple data pointers */
$pragna MODAND (DP2)

/* Disable interrupts globally */

EA = 0;

/* Copy data using nultiple data pointers */
mencpy (newbuf, ol dbuf, sizeof (newbuf));

/* Re-enable interrupts globally */

EA = 1;

/* Disabl e usage of nultiple data pointers */
$pragma NOVIODAMD

Code Bankswitching

RTX-51 is fully compatible with the code banking scheme implemented by BL51
(version X2.04 or above). RTX-251 does not support code bank switching, since
code size may exceed 64 Kbytes in any case.

Building of a banked system requires the following steps (RTX-51 only):

m Adapt thefile L51_BANK.A51 to your requirements (see BL51
documentation).

= Set the symbol 2RTX_BANKSWITCHING in RTXSETUP.DCL to 1.

38 Programming Concepts

m Link the system as described in the BL51 documentation. All defined banks
can be used fredy by the RTX-51 tasks.

m Thefollowing code sections are automatically located in the common area:
RTX-51 system functions,
Reset and interrupt vectors
Code constants,
C51 interrupt functions,

Bank switch jump table,
Intrinsic C51 run-time library functions

Stack usage with code bankswitching:

3 m Add 3 Bytes to each fast task stack for the bankswitch handling.
m Standard tasks use no extra stack space for the bankswitching.

RTX-51/RTX-251 39

Chapter 4. Programmer’s Reference

RTX-51/251 and the application built on it are linked with each other viaa
C51/C251 compatible procedural interface. This interface provides all functions
for managing tasks, for task communication, and for all other services.

All RTX-51/251 system functions are reentrant and are implemented independent
of the register bank used.

This chapter contains an extensive description of all RTX-51/251 system
functions. Each of the following descriptions covers:

= Function of the call

m Declaration in C51/C251 (like contained in RTX51.H/RTX251.H)

m Explanation of the parameters

m Explanation of thereturn value

m Cal example

m Cross reference to other calls

The function descriptions are contained in normal print; examples are each printed
inadifferent font.

Name Conventions

The name of the respective system function describes its type of use:
m System functions whose name begins with " 0s " may be used solely by
RTX-51/251 tasks.

m System calls whose name begins with "isr_" may be used solely by
C51/C251 interrupt functions.

m System calls whose name begins with " oi_" may be used by RT X-51/251
tasks and by C51/C251 interrupt functions, as well.

40 Programmer’s Reference

Return Values

Each system function returns an execution status as a return value. This provides
information whether the function could be executed successfully. Other status
information is passed to the caller in the sameway. In the description of the
individual system functions, the return values currently possible are explained
including their meaning. The value O is returned after an error-free execution for
most of the system functions, when purposeful.

INCLUDE Files

The declarations for the RTX-51/251 system functions and all constant definitions
are contained in the files RTX51.H/RTX251.H. These declarations must be
specified at the beginning of the source program in an INCLUDE statement
(#include <rtx51.h>/#include <rtx251.h>).

Overview

Initialize and Start the System:
0s_start_system (task_number)

Task Management:
0s_create task (task_number)
0s_deete task (task_number)
0S_running_task_id ()

Interrupt Management:
os_attach_interrupt (interrupt)
0s_detach interrupt (interrupt)
os_enable isr (interrupt)
os_disable isr (interrupt)
0s_wait (event_sdector, timeout, 0)
oi_set_int_masks (ien0, ienl, ien2)
oi_reset_int_masks (ien0, ienl, ien2)

Signal Functions:
0s_send_signal (task_number)
0s_wait (event_sdlector, timeout, 0)

RTX-51/RTX-251 41

os _clear_signal (task_number)
isr_send_signal (task_number)

M essage Functions:
0s_send_message (mailbox, message, timeout)
0s_wait (event_sdlector, timeout, *message)
isr_send_message (mailbox, message)
isr_recv_message (mailbox, * message)

Semaphore Functions:
0s_send_token (semaphore)
0s_wait (event_sdlector, timeout, 0)

Dynamic Memory Management:
os_create pool (block_size, *memory, mem_size)
0s_get_block (block_size)
os_free block (block_size, *block)

Functions with the System Clock:
0s_set_dlice (timeslice)
0s_wait (event_sdlector, timeout, 0)

Debug Functions:
os_check_tasks (*table)
0s_check_task (task_number, *table)
os_check_mailboxes (*table)
os_check_mailbox (mailbox, *table)
0s_check _semaphores (*table)
os_check _semaphore (semaphore, *table)
0s_check_pool (block_size, *table)

42 Programmer’s Reference

Initialize and Start the System

Function Call Overview

A C51/C251 application typically will start its program execution by the main
function, after the C runtime environment has been set up. The startup of the run
time environment is handled by a C51/C251 library function, whose source code
can beseenin file STARTUP.A51/ STARTxxx.A51 (xxx: designating a special
version) or in file START251.A51, respectively.

The function "main” (called main program) contains the first user statement at its
beginning. It establishes the subroutine level O of every user application. Thefirst
subroutine called by it will run on the subroutine level 1 and so on.

During its execution the following environment € ements are used by the main
program (independent of use of RTX-51/251):

(1) Register bank 0

(2) System stack (top = ?STACK)

An application with RTX-51/251 will behave just like an application without
RTX-51/251 until the moment the "os_start_system" function is called. By use of
this function the normal C program will be transformed into a multitasking system.

Thefollowing steps will take place during "os_start_system':

- disable al interrupts

- clear the RTX system memory space

- initialization of RTX system tables

- initialization of the system clock hardware

- startup of the RTX system clock handler (system ISR)
- creation of thefirst user task

- initialization of the interrupt hardware

- enableinterrupts

- start dispatcher

By "o0s_start_system" thefirst user task is created and the system clock handler
(system ISR) is started.

RTX-51/RTX-251 43

Some considerations concerning the C51/C251 main function:

- The code part of the function "main”, which is executed before
"0s_start_system" is called, is executed like any C application without RTX-
51/251.

- The code part following the call of "os_start_system” is entered only when the
system function “os_start_system” fails. Otherwisethefirst user task will be
entered. Thereis no return from the function “os_start_system” in this case.

- Upon completion of "os_start_system" (when entering the first user task) the
interrupt system will be globally enabled (EA = 1). Unless the user disables it
explicitly, it will stay enabled almost all the time (also during system code of
RTX-51/251).

Available functions;

Function Name Parameter Description

0s_start_system unsigned char task_number Initializes the system and starts the first
Identification of first user task user task.
(number used in C51 task It is the first RTX function, which may be

declaration). called in a program.

44

Programmer’s Reference

0S_start_system

Initialize RTX-51/251 and start thefirst task. This function is normally called in
the main program (main) of the C51/C251 application.

Prototype: signed char os_start_system
(unsigned char task_number)
Par ameter: task_number identifies thetask to be started first. The same
number is to be used which was used in the task declaration
(0..255).
Return Value: If theinitialization was successful, thefirst task begins to run.

Therefore, the program normally never returns from this call.

If the program does, however, return from this call, the
initialization was not successful:

NOT_OK (-1):
System could not be started. One of the following errors was
determined:

m General error during starting

= No task with this number was declared (wrong number)

m Theinterrupt source which is normally assigned by the
system clock (Timer O or 1) is used by a C51/C251
interrupt function from the application. This stateis not
allowed since the system clock would not function
correctly as a result.

See Also: 0s_create task

Exewnple' #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */
void first_task (void) _task_ O _priority_ 0 {
. task code
}

void main (void) {
if (os_start_system (0)) {
. error handling
}

}

RTX-51/RTX-251 45

Task Management

Function Call Overview

Available functions are:

Function Name Parameter Description ‘
0s_create_task unsigned char task_number Creates a task and includes it in
Number of task to be started (= dispatching.
number used for task declaration).
os_delete_task unsigned char task_number Terminates a task.
Number of task to be terminated.
0s_running_task_id (void) Returns the number (identification) of the

running task.

46 Programmer’s Reference

0S_create_task
Task function
The system operation, os_create task, starts a function defined with the C51/C251

attribute"_task_" asa RTX-51/251 task. Thetask is assigned to the necessary
operating resources and is placed in thelist of READY tasks.

Prototype: signed char os_create task (unsigned char task_number)

Par ameter: task_number identifies thetask to be started. The same
number is to be used which was used in the task declaration
(0..255).

Return Value: OK (0):
Task was started successfully (no error).

NOT_OK (-1):
Task could not be started. One of the following errors was
determined:

m Register bank already assigned (error only possible when
starting RTX-51 fast tasks)

= Maximum number of tasks already running (16 standard
tasks for RTX-51; 16 tasks of any type for RTX-251)

= No task with this number was declared (wrong number).

m Task already started.

See Also: 0s_ddete task, os _check tasks, os check task

Note: If the new task has a higher priority than the running task, a
task switching occurs to the new task.

Exewnple: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d count _task (void) _task_ 2 _priority_ 0 {
. task code

)

void first_task (void) _task_O _priority_ 0 {
/* Function "count_task" is started as a task */
if (os_create_task (2)) {

... error handling

}

RTX-51/RTX-251 47

void main (void) {
if (os_start_system (0)) {
error handling
}

}

48

Programmer’s Reference

0os_delete task
Task function

The system operation, os_dedete task, stops a task and removes it from all system
lists. Releases all operating resources assigned to the task.

Prototype: signed char os_delete task (unsigned char task_number)

Par ameter: task_number identifies thetask to be ddeted. The same
number is to be used which was used in the task declaration.

Only tasks which were created with "os_create task" can be
deleted. The running task can also stop itsef.

Return Value: OK (0):
Task was stopped successfully.

NOT_OK (-1):

The designated task was never created with "os_create task".
See Also: os_create task, os _check task, os check tasks
Note: If the calling task specifiesitsdf as atask to be deleted, a task

switching to the next READY task subsequently occurs.

Exewnple: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void first_task (void) _task_O _priority_ 0 {
. task code
}

void main (void) {
/* Task stopped itself */
if (os_delete_task (0)) {
. error handling
}

}

RTX-51/RTX-251 49

0s_running_task id

Task function

The system operation, 0s_running_task_id, returns the task number of the running

task. Thisisthe number which was used in the task declaration. Using this system

function, a C51/C251 function can, for example, determine the task from which it

was called.

Prototype: signed char os_running_task_id (void)

Par ameter: None

Return Value: The number of thetask currently being executed by the
processor is returned. The task number corresponds to the

number used in the task declaration in this case (0..255).

See Also: os_create task, os _check task, os check tasks

Note: A C51/C251 function can use this system function to
determine from which task it was actually called.

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void first_task (void) _task_O _priority_ 0 {
unsi gned char task_num
. task code

/* Interrogate own task number */
task_num = os_running_task_id ();
/* task_num contains 0 */

=

void main (void) {
/* Task stopped itself */
if (os_delete_task (0)) {
. error handling
}

}

50

Programmer’s Reference

Interrupt Management

Function Call Overview

Available functions are

Function Name Parameter

os_attach_interrupt unsigned char interrupt_nbr
Vector number of interrupt source

to be attached.

os_detach_interrupt unsigned char interrupt_nbr
Vector number of interrupt source

to be attached.

0s_wait unsigned int event_selector
Specification of requested wait
events. Any combination of wait
for interrupt, message/semaphore,
signal, time-out and interval is
allowed. Optionally identification
of mailbox or semaphore.

unsigned int event_selector
Specification of requested wait
events. Any combination of wait
for interrupt, message/semaphore,
signal, time-out and interval is
allowed. Optionally identification
of mailbox or semaphore.

unsigned int timeout
Time-out in system ticks.
Insignificant if no wait for time-out
is specified.

unsigned int xdata *message
Address of buffer (2 bytes) in
XDATA space where received
message shall be stored.
Insignificant if no wait for message
is specified.

0s_enable_isr unsigned char interrupt_nbr
Identification (vector number) of

interrupt source the ISR waits for.

os_disable_isr unsigned char interrupt_nbr
Identification (trap number) of

interrupt source the ISR waits for.

oi_set_int_masks unsigned char ien0, ienl, ien2
Interrupt register masks containing
a1 at each bit position to be

enabled.

Description

Assigns an interrupt to the calling task.

Reverses assignment of an interrupt
source to a task.

This is the general wait function of RTX-
51/251.

Any combination of events may be
selected. If one of the specified events
occurs, then task is made ready again
(i.e. waiting for events is terminated).

For details see separate chapter about
‘os_wait’ !

Enables the interrupt source assigned to
an ISR.

Disables the interrupt source assigned to
an ISR.

Enable one or more interrupt(s) not
associated to RTX tasks. Modifies
physical registers and logical mirrors kept
by RTX.

RTX-51/RTX-251 51

Function Name Parameter Description

oi_reset_int_masks unsigned char ien0, ienl, ien2 Disable one or more interrupt(s) not
Interrupt register masks containing associated to RTX tasks. Modifies
a 1 at each bit position to be physical registers and logical mirrors kept

disabled. by RTX.

52 Programmer’s Reference

os_attach_interrupt
Task function

The system call, os_attach_interrupt, dynamically assigns an interrupt sourceto
the calling task. Beforewait is made for an interrupt using "os_wait", this must
first be assigned to thetask. This assignment remains in force until it is canceled
with "os_detach interrupt”.

Each interrupt source can not be assigned to more than one task. However,
several interrupt sources can be assigned to a single task (a task can wait for
several interrupts to occur).

Using "os_attach_interrupt", the corresponding interrupt is still not enabled in the
processor hardware (INTERRUPT ENABLE register). All assigned interrupts are
enabled (see section "Handling of the 8051/MCS 251 Interrupt Enable Register”,
page 25) only after the task waits for an interrupt to occur with "os_wait".

Prototype: signed char os_attach_interrupt
(unsigned char interrupt)

Par ameter : interrupt designates the vector number of the desired
interrupt source. Permissible values are 0..31.
RTX-51/251 stores a corresponding interrupt vector at
address "8 * interrupt + 3".
The vector number which is permissible depends on the
microcontroller type used from the 8051/M CS 251 family.
RTX-51/251 checks whether the specified interrupt is
supported by the microcontroller used (see configuration).

The standard 8051 microcontroller supports the following
vector numbers:

0: External O interrupt

1: Timer/counter O interrupt (can be reserved for the system
clock)

2: External 1interrupt

3. Timer/counter 1 interrupt (can bereserved for the system
clock)

RTX-51/RTX-251 53

4: Serial port

Different processor versions of the 8051/MCS 251 family
may support additional interrupt sources (see literature of
chip manufacturer).

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
Function not executed, one of the following errors was
determined:

= Vector number does not exist for this processor type.

m Theinterrupt source requested was already assigned to
another task.

m Interrupt is already used by a C51/C251 interrupt
function.

= Interrupt is used by the system clock

See Also: 0s_detach interrupt, os_wait

Note: More than oneinterrupt may be assigned to a particular task.
It is not allowed, however, to assign a particular interrupt
source to more than one task.

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d count _task (void) _task_ 2 _priority_ 0 {
/* Assign external O interrupt to this task */
if (os_attach_interrupt (0)) {
. error handling

}
for (5;) { /* Endl ess |oop */
os_wait (K_INT, Oxff, 0); /* Wait for int. */
. task code
}

54

Programmer’s Reference

os_detach_interrupt
Task function

The system operation os_detach_interrupt, cances the assignment of an interrupt
sourceto the calling task. The only interrupt sources that can be used are those
that were previously assigned to atask with "os_attach _interrupt”.

Prototype: signed char os_detach_interrupt
(unsigned char interrupt)

Par ameter : interrupt designates the vector number of the desired
interrupt source. Permissible values are 0..31.
RTX-51/251 stores a corresponding interrupt vector at
address "8 * interrupt + 3".
The vector number which is permissible depends on the
microcontroller type used from the 8051/M CS 251 family.
RTX-51/251 checks whether the specified interrupt is
supported by the microcontroller used (see configuration).

The standard 8051 microcontroller supports the following
vector numbers:

0: External O interrupt

1: Timer/counter O interrupt (can be reserved for the system
clock)

2: External 1interrupt

3. Timer/counter 1 interrupt (can bereserved for the system
clock)

4: Serial port

Different processor versions of the 8051/MCS 251 family
may support additional interrupt sources (see literature of
chip manufacturer).

Return Value: OK (0):
Function executed successfully.

RTX-51/RTX-251 55

NOT_OK (-1):
Function not executed, one of the following errors was
determined:

m Interrupt does not exist for this processor type.
= Interrupt source requested is not assigned to the calling

task.
See Also: os_attach_interrupt, os_wait
Note: More than oneinterrupt may be assigned to a particular task.

It is not allowed, however, to assign a particular interrupt
source to more than one task.

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d count _task (void) _task_ 2 _priority_ 0 {
/* Assign external O interrupt to this task */
if (os_attach_interrupt (0)) {
error handling

}
for (;;) { /* Endl ess |oop */
os_wait (K_INT, Oxff, 0); /* Wait for int. */
task code
/* After the int. processing has finished */
/* the assignment to this task is canceled */
if (os_detach_interrupt (3)) {
error handling
}
}

56 Programmer’s Reference

0os_enable_isr
Task function

The system operation, os_enable isr, enables an interrupt source which is assigned
to a C51/C251 interrupt function (the assignment is determined in the interrupt
function definition, see section "Declaration of C51/C251 Interrupt Functions®,
page 26). Theinterrupt must be enabled with this function in order for an
interrupt to trigger a C51/C251 interrupt function.

Prototype: signed char os_enable isr (unsigned char interrupt)

Par ameter : interrupt designates the vector number which the desired
C51/C251 interrupt function (Interrupt Service Routine, ISR)
isassigned to. Permissible values are0..31.

C51/C251 stores a corresponding interrupt vector at address
"8 * interrupt + 3".

The vector number which is permissible depends on the
microcontroller type used from the 8051/M CS 251 family.
RTX-51/251 checks whether the specified interrupt is
supported by the microcontroller used (see configuration).

The standard 8051 microcontroller supports the following
vector numbers:

0: External O interrupt

1: Timer/counter O interrupt (can be reserved for the system
clock)

2: External 1interrupt

3. Timer/counter 1 interrupt (can bereserved for the system
clock)

4: Serial port

Different processor versions of the 8051/MCS 251 family
may support additional interrupt sources (see literature of
chip manufacturer).

RTX-51/RTX-251 57

Return Value: OK (0):
Function was executed successfully

NOT_OK (-1):
Function not executed, one of the following errors was
determined:

m Interrupt does not exist for this processor type.
m No C51/C251 interrupt function exists for this vector

number.
See Also: os_disable isr
Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void fast_int (void) interrupt 7 using 1 {

/* C51/C251 int. function, waits for int. 7 */
/* Uses register bank 1 */
... ISR code
}

void isr_manager (void) _task_ 4 _priority_1 {
/* Enable the interrupt with vector nunber 7 */
if os_enable_isr (7) {
... error handling
}.

task code

58

Programmer’s Reference

os_disable isr

Task function

The system operation, os_disable isr, disables an interrupt source assigned to a
C51/C251 interrupt function. Thisis used to temporarily inactivate an Interrupt
Service Routine (ISR).

Prototype:

Parameter:

Return Value

signed char os_disable isr (unsigned char interrupt)

interrupt designates the vector number which is assigned to
the desired C51/C251 interrupt function.

Permissible values are 0..31.

C51/C251 stores a corresponding interrupt vector at address
"8 * interrupt + 3".

The vector number which is permissible depends on the
microcontroller type used from the 8051/M CS 251 family.
RTX-51/251 checks whether the specified interrupt is
supported by the microcontroller used (see configuration).

The standard 8051 microcontroller supports the following
vector numbers:

0: External O interrupt

1: Timer/counter O interrupt (can be reserved for the system
clock)

2: External 1interrupt

3. Timer/counter 1 interrupt (can bereserved for the system
clock)

4: Serial port

Different processor versions of the 8051/MCS 251 family
may support additional interrupt sources (see literature of
chip manufacturer).

OK (0):
Function was executed successfully.

RTX-51/RTX-251

59

See Also:

Example:

NOT_OK (-1):
Function not executed, one of the following errors was
determined:

m Interrupt does not exist for this processor type.

m No C51/C251 interrupt function exists for this vector
number.

0s_enable isr

#i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void fast_int (void) interrupt 7 using 1 {

/* C51/C251 int. function, waits for int. 7 */

/* Uses register bank 1 */
| SR code
}
void isr_manager (void) _task_ 4 _priority_1 {
/* Disable the interrupt with vector nunber 7 */
if os_disable_isr (7) {

error handling

)

task code

60 Programmer’s Reference

oi_set_int_masks
Task/ISR function

The system operation, oi_set_int_masks, sets one or more interrupt mask bits
immediately.

Since this function is dedicated to non standard cases it does not contain any
parameter checks.

Its use should be restricted to the following special cases:

- to manipulate special bits, which are part of theinterrupt enable registers.
(Example: watchdog control bits on 80C517/80C537 processors)

- to modify interrupt enable bits from inside a C51/C251 interrupt function.
Not to be used for interrupt sources attached to RTX-51/251 tasks !
Prototype: signed char oi_set_int_masks (unsigned char ienO,

unsigned char ienl,
unsigned char ien2)

Parameter: ienO, ienl, ien2 represent the bit masks of theinterrupt enable
registers.
An interrupt source to be enabled explicitly hasto set its
associated bit. For this parameter the same bit layout is used
as defined for the corresponding interrupt enable registers.
Depending on the processor type used zero or more of these
masks are insignificant. Use as follows:
ien0, ienl, ien2 for processors with 3 interrupt enable
registers.
ienO, ienl for processors with 2 interrupt enable registers
(ien2 is insignificant)
ienO for processors with 1 interrupt enable register (ienl and
ien2 areinsignificant).

Return Value: OK (0):
Function was executed successfully. Thisreturn codeis

always used as this function does no parameter checking at all
!

See Also: Oi_reset_int_masks

RTX-51/RTX-251

61

Note:

Example:

Never change an interrupt enable bit whose interrupt sourceis
attached to a RTX-51/251 task.

This function can not modify the global interrupt enable bit
(EA-bit). This bit can be manipulated by the user directly.

#i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void isr_manager (void) _task_ 4 _priority_1 {
/* Enable the serial interrupt of a 8051/ */
/* MCS 251 processor */
oi _set_int_masks (0x10, 0, 0);

. task code

62 Programmer’s Reference

oi_reset_int_masks
Task/ISR function

The system operation, oi_reset_int_masks, resets one or more interrupt mask bits
immediately.

Since this function is dedicated to non standard cases it does not contain any
parameter checks.

Its use should be restricted to the following special cases:

- to manipulate special bits, which are part of theinterrupt enable registers.
(Example: watchdog control bits on 80C517/80C537 processors)

- to modify interrupt enable bits from inside a C51/C251 interrupt function.
Not to be used for interrupt sources attached to RTX-51/251 tasks !
Prototype: signed char oi_reset_int_masks (unsigned char ien0,

unsigned char ienl,
unsigned char ien2)

Parameter: ienO, ienl, ien2 represent the bit masks of theinterrupt enable
registers.
An interrupt source to be disabled explicitly has to set its
associated bit. For this parameter the same bit layout is used
as defined for the corresponding interrupt enable registers.
Depending on the processor type used zero or more of these
masks are insignificant. Use as follows:
ien0, ienl, ien2 for processors with 3 interrupt enable
registers.
ienO, ienl for processors with 2 interrupt enable registers
(ien2 is insignificant)
ienO for processors with 1 interrupt enable register (ienl and
ien2 areinsignificant).

Return Value: OK (0):
Function was executed successfully. Thisreturn codeis

always used as this function does no parameter checking at all
!

See Also: oi_set_int_masks

RTX-51/RTX-251

63

Note:

Example:

Never change any interrupt enable bit whose interrupt source
is attached to a RTX-51/251 task.

This function can not modify the global interrupt enable bit
(EA-bit). This bit can be manipulated by the user directly.

#i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */
voi d isr_manager (void) _task_ 4 _priority_ 1 {

/* Disable the serial int. of a 8051/ */

/* MCS 251 processor */

oi _reset _i nt_masks (0x10, 0, 0);

. task code

64 Programmer’s Reference

Wait Function

Function Call Overview

Function Name Parameter Description ‘
0s_wait unsigned int event_selector This is the general wait function of RTX-
Specification of requested wait 51/251.

events. Any combination of wait Any combination of events may be

for interrupt, message/semaphore, selected. If one of the specified events
signal, time-out and interval is occurs, then task is made ready again
allowed. Optionally identification (i.e. waiting for events is terminated).
of mailbox or semaphore.

unsigned int timeout
Time-out in system ticks.
Insignificant if no wait for time-out
is specified.

unsigned int xdata *message
Address of buffer (2 bytes) in
XDATA space where received
message shall be stored.
Insignificant if no wait for message
is specified.

RTX-51/RTX-251 65

os_wait
Task function

Thisis the general RTX-51/251 wait function. All wait functions of tasks are
executed using this function.

"0s_wait" can be used to wait for one or more events. Events can be any
combination of an interrupt, signal, interval, time-out or message/token arrived. If
one of the specified events occurs, the called task is made READY again (OR’ing
theindividual events).

Prototype: signed char os wait (unsigned char event_selector,
unsigned char timer_ticks,
unsigned int xdata * message)

Par ameter : event_selector specifies the events which are to be waited
for. Thevalueis calculated according to the following simple
equation:

event_sdector = (eventl) + (event2) + (event3) +
(eventd) + (event5) + (mbxsem_nbr)

eventl= K_MBX (10H) to wait for a message or a token
event2= K_INT (20H) to wait for interrupt

event3= K_SIG (40H) to wait for signal

event4= K_TMO (80H) to wait for time-out

event5= K_IVL (00H) to wait for interval

mbxsem _nbr =0..7

Sedlects the mailbox from which a messageis to be received.
This specification is only necessary if the waiting for a
message/semaphore (K_MBX) was also specified.

Note: Simultaneous waiting on several mailboxes or
semaphoresis not allowed.

mbxsem_nbr = 8..15

Sdects the semaphore from which a token is to be received.
This specification is only necessary if the waiting for a
message/semaphore (K_MBX) was also specified.

66

Programmer’s Reference

Note: Simultaneous waiting on several semaphores or
mailboxes is not allowed.

Example 1: Wait for interrupt or signal.
event_sdector = K_INT + K_SIG

Example 2: Wait for message from mailbox 3 or time-out
event_sdector =K_MBX + K TMO + 3

Example 3: Wait for interrupt or message from mailbox 1
event_sdector = K_MBX + K_INT +1

Example 4: Wait for interrupt or token from semaphore 9
event_sdector = K_MBX + K_INT +9

timer _ticks determines the number of systemintervalsto
occur until atime-out event occurs, if K_TMO was specified
(in ‘event_sdector’).

Determines the length of interval, if K_IVL was specified (in
‘event_sdector’).

Must be set to 0 (or 255) if no wait for time-out or interval
has been specified.

0..254:

Number of system intervals for which the event should wait.
If the value O was specified, the system checks to seeif one of
the other specified events has already occurred (interrupt
already pending, signal already set, etc.). If no other event
was specified, or if no other event occurred, the system
function returns to the time-out return value (TMO_EVENT).
Otherwise, the corresponding event value is returned.

255:
Endless waiting.

message is a variable (2 bytes) in the XDATA areawhere the
message that is read by the mailbox isto be stored. This
parameter is insignificant if no wait for a mailbox message
was specified (a null pointer can be specified).

RTX-51/RTX-251 67

Return Value: MSG_EVENT (1): A message was received from mailbox
and stored in "message’.
INT_EVENT (2): Aninterrupt occurred.
SIG_EVENT (3): A signal was received.
TMO_EVENT (4): A time-out or interval end occurred.
SEM_EVENT (5) A token arrived from semaphore.

NOT_OK (-1): Task wait list isfull (morethan 16 tasks
waiting on a mailbox/semaphore; this
error can only occur with the event

K_MBX).

See Also: 0s_send_message, os_send_token, isr_send_message,
isr_recv-_message, os_check_mailboxes, os_check_mailbox,
0s_set_dlice

Note: If C51/C251 operates with an optimization level larger than

OPTIMIZE(3), local variables can be kept in registers. The
function "os_wait" expects message variables in the XDATA
area, however. If an optimization level larger than threeis
used, the local message variable should be provided with the
attribute "static*. C51/C251 does not store these types of
variablesin theregisters.

If await for time-out is combined with await for interval,
then the wait for time-out supersedes. In this case only a wait
for time-out is done.

A wait for time-out is based on the actual system time, while
await for interval is based on the last wake-up time of the
calling task (thus establishing aregular interval). If thereis
no last wake-up time stored for a task, then the actual time
will be used (this is the case when waiting for interval the first
time).

Waiting for a mailbox combined with waiting for a
semaphoreis not supported. These two wait types are
mutually exclusive.

Examplel: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d delay_task (void) _task_ 54 _priority_ 2 {
for (5;) {
/* Wait only for Tine-out */
os_wait (K_TMO 100, 0);
/* The follow ng functions are all */

68 Programmer’s Reference

/* executed 100 system cycl es */

Example2: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void count_task (void) task_ 2 priority_ 0 {
/* Assign external O interrupt to this task*/
if (os_attach_interrupt (0)) {

error handling

}
for (5:) { /* Endl ess | oop */
/* Wait for interrupt or tinme-out */
if (os_wait(K INT+K TMO, 10, 0)
== TMO_EVENT) {
[* If int. O does not occur within */
/* 10 system cycl es, then */
/* performthis section */
} else {
/* The int. occurred within */
/* 10 system cycl es */
}
... task code
}
}
Example3' #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void multiple wait (void) _task_ 19 {
static unsigned int xdata nes;

switch (os_wait (K MBX+K TMO+K SI G+2, 10, &data)){
case MSG_EVENT:
/* Message recei pt fromnbox 2 */
/* in "DATA" */

br eak;
case SI G EVENT:

/* Signal receipt */

br eak;

69

RTX-51/RTX-251

case TMO EVENT:

/* No int. or

nessage receipt within */
/* 10 system cycles --> time-out

*/

br eak;

70

Programmer’s Reference

Signal Functions

Function Call Overview

Available functions are

Function Name Parameter

os_send_signal unsigned char task_number
Identification (number) of signal

receiving task.

os_clear_signal unsigned char task_number
Identification (number) of task,

whose signal shall be cleared.

isr_send_signal unsigned char task_number
Identification (number) of signal

receiving task.

0s_wait unsigned int event_selector
Specification of requested wait
events. Any combination of wait for
interrupt, message/semaphore,
signal, time-out and interval is
allowed. Optionally identification of
mailbox or semaphore.

unsigned int timeout
Time-out in system ticks.
Insignificant if no wait for time-out is
specified.

unsigned int xdata *message
Address of buffer (2 bytes) in
XDATA space where received
message shall be stored.
Insignificant if no wait for message
is specified.

Description

Send a signal to a task.

Clear signal of a task.

Send a signal to a task.

This is the general wait function of RTX-
51/251.

Any combination of events may be
selected. If one of the specified events
occurs, then task is made ready again
(i.e. waiting for events is terminated).

For details see separate chapter about
‘os_wait’ !

RTX-51/RTX-251 71

os_send_signal

Task function

The system operation, os_send_signal, sends a signal to another task. If thetask is
already waiting for asignal, then it is made READY again by this. Otherwise, the
signal is stored in the signal flag of the addressed task.

Prototype: signed char os_send_signal (unsigned char task_number)

Par ameter: task_number istheidentification of thetask to wherea
signal isto be sent.

Return Value: OK (0):
Signal was sent successfully.

NOT_OK (-1):
No signal was sent. The following exception occurred:

m The specified task does not exist.
m Thesignal flag was already set since the task still has not
finished processing (received) a previously sent signal.
See Also: os_wait, isr_send_signal, os _clear_signal
Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */
void xyz_task (void) _task_ 89 _priority_ 0 {
. task code

/* Send signal to task 19 */
os_send_si gnal (19);

72 Programmer’s Reference

os_clear_signal

Task function

The system operation, os_clear_signal, clears the signal flag of a certain task; (i.e.,
asignal possibly stored for thetask is cleared). This functionis primarily intended
for creating defined output states.

Prototype: signed char os_clear_signal (unsigned char task_number)

Parameter: task_number is the identification of the task whose signal
flag stateis to be cleared.

Return Value: OK (0):
Signal flag was cleared successfully.

NOT_OK (-1):

Function was not executed. The specified task does not exist.
See Also: 0s_wait, os_send_signal, isr_send_signal
Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ 89 _priority_ 0 {
...task code
/* Clear signal fromtask 19 */
os_cl ear_signal (19);

RTX-51/RTX-251

73

isr_send_signal

ISR Function

A C51/C251 interrupt function sends a signal to atask. If thistask is already
waiting for a signal, then it is made READY again by this. Otherwise, the signal
is stored in the signal flag of the addressed task.

Prototype:

Parameter:

Return Value

See Also:

Example:

signed char isr_send_signal

(unsigned char task_number)

task_number istheidentification of thetask to wherea

signal isto be sent.

OK (0):
Signal was sent successfully.

NOT_OK (-1):

No signal was sent. The specified task does not exist.

0s_wait, os_send_signal, os_clear_signal
#i ncl ude <rtx51. h> /* Use rtx251.h for RTX-

void fast_int (void) interrupt 7 using 1 {
/* C51/C251 int. function, wait for int. 7
/* Uses register bank 1

/* If interrupt 7 occurs, the
/* ISR sends a signal to task 19
i sr_send_signal (19);

251 */

*/

*/

*/
*/

74 Programmer’s Reference

Message Functions

Function Call Overview

Available functions are

Function Name Parameter Description ‘

0s_send_message unsigned char mailbox Send a message to a mailbox. If
Identification (number) of mailbox message list is full, then the task will wait
a message shall be sent to. until enough space is available (a timelimit

Unsigned int message may be chosen).

Message to be sent (2 byte value).

Unsigned int timeout
Timelimit for waiting in case the
message list is full.

isr_send_message unsigned char mailbox Send a message to a mailbox. If
Identification (number) of mailbox = message list is full at the moment, then
a message shall be sent to. the message will be lost.

unsigned int message
Message to be sent (2 byte value).

isr_recv_message unsigned char mailbox Receive a message from a mailbox, if any
Identification (number) of mailbox s stored in it.
a message shall be received from.

unsigned int xdata *message
Address of buffer (2 bytes) in
XDATA space where received
message shall be stored.

RTX-51/RTX-251

75

Function Name

0s_wait

Parameter

unsigned int event_selector
Specification of requested wait
events. Any combination of wait
for interrupt, message/semaphore,
signal, time-out and interval is
allowed. Optionally identification
of mailbox or semaphore.

unsigned int timeout
Time-out in system ticks.
Insignificant if no wait for time-out
is specified.

unsigned int xdata *message
Address of buffer (2 bytes) in
XDATA space where received
message shall be stored.
Insignificant if no wait for message
is specified.

Description

This is the general wait function of RTX-
51/251.

Any combination of events may be
selected. If one of the specified events
occurs, then task is made ready again
(i.e. waiting for events is terminated).

For details see separate chapter about
‘os_wait’ !

76 Programmer’s Reference

0s_send_message
Task function

The system operation, os_send_message, sends a message to a certain mailbox. A
message is a 2-byte value which can be defined by the user according to
requirements, either directly as a data value or as pointer to a data buffer.

If the message list of the mailbox is full, the calling task is blocked. Thetask is
made READY again only after another task receives a message (and therefore has
made space) or the sdlectable time limit has exceeded.

A mailbox can store a maximum of 8 messages. A maximum of 16 tasks can wait
at afull mailbox.

Prototype: signed char os_send_message (unsigned char mailbox,
unsigned int message,
unsigned char timeout)

Parameter: mailbox is the identification of the mailbox. Permissible
values are0..7.

message is the message to be sent (2-byte value).

timeout is the time limit for the wait time for a full message
list. The parameter can have the following values in this case:

0.. 254:

Number of system intervals to be waited for in the case of a
full mailbox. If the value O was specified and the mailbox is
already full when the function is called, no wait is made
(conditional waiting).

255:
Wait until space exists in the mailbox again ("end-less’
waiting).

Return Value: OK (0):
The message was sent to the mailbox successfully.

NOT_OK (-1):

RTX-51/RTX-251 77

The message could not me sent to a mailbox. One of the
following exceptions occurred:

m Task wait list for writing tasks is full (thisis only possible
if more than 16 tasks want to write to the same mailbox).

m Specified mailbox does not exist (wrong mailbox
parameter).

= Time-out when waiting for a full message list.

See Also: 0s_wait, isr_send_message, isr_recv_message, os_check -
mailboxes, os_check _mailbox

Note: "timeout” = O:
If message list isfull, return value NOT_OK isimmediately
returned.
"timeout" = 255:

Identical to "timeout" = infinite.

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d producer (void) _task_6 _priority_ 2 {
int data;

data = 0x1250;
/* Send data in the var. "data" to mailbox 3 */
/* If the mailbox is already full, wait for a */
/* maxi mum of 10 system cl ock cycl es */
if (os_send_nessage (3, data, 10)) {

. error handling
}

}

78

Programmer’s Reference

Isr_send_message
Interrupt Service Routine (ISR) Function

A C51/C251 interrupt function sends a message to a certain mailbox. A message
is a 2-byte value which, according to requirements, is either directly defined by the
user as a data value or as a pointer to a data buffer.

If the message list of the mailbox is full, the messageis lost.
A mailbox can store a maximum of 8 messages.

Prototype: signed char isr_send _message (unsigned char mailbox,
unsigned int message)

Parameter: mailbox is the identification of the mailbox. Permissible
values are0..7.

message is the message to be sent (2-byte value).

Return Value: OK (0):
M essage was sent successfully.

NOT_OK (-1):
Function was not executed. The specified mailbox does not
exist.

See Also: 0s_wait, 0s_send_message, isr_recv_message,
os_check _mail-boxes, os_check _mailbox

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void fast_int (void) interrupt 7 using 1 {
/* C51/C251 int. function, wait for int. 7 */
/* Uses register bank 1 */
/* Sends value 1 to mail box 2 */
i sr_send_message (2, 1);

}

RTX-51/RTX-251 79

ISr_recv_message
Interrupt Service Routine (ISR) Function

A C51/C251 interrupt function receives a message from a mailbox, providing one
isavailable. C51/C251 interrupt function can not wait at a mailbox if no message

is available.

Prototype: signed char isr_recv_message (unsigned char mailbox,
unsigned int xdata * message)

Parameter: mailbox is the identification of the mailbox from which the

message is to be received.

message is a 2-byte variablein the XDATA area where the
message read by mailbox is stored.

Return Value: OK (0):
A message was received and stored in "message’.

NOT_OK (-1):
No message could be received. One of the following
exceptions was determined:

= Specified mailbox does not exist.
m No message was available (mailbox empty).

See Also: 0s_wait, 0s_send_message, isr_send_message,
os_check_mailboxes, os_check _mailbox

Note: An Interrupt Service Routine (ISR) always waits only for the
interrupt assigned to it. Waiting for a message is therefore
not possible.

Example: #i ncl ude <rtx51. h> /* Use rtx251. h for RTX-251 */

void fast_int (void) interrupt 7 using 1 {
/* C51/C251 int. function, wait for int. 7 */
/* Uses register bank 1 */
static unsigned int xdata data,;

/* Read frommailbox 2 in the variable "data" */
i sr_recv_message (2, &data);

80 Programmer’s Reference

RTX-51/RTX-251

81

Semaphore Functions

Function Call Overview

Available functions are:

Function Name

os_send_token

0s_wait

Parameter

unsigned char semaphore
Identification (number) of
semaphore token shall be sent to.

unsigned int event_selector
Specification of requested wait
events. Any combination of wait
for interrupt, message/semaphore,
signal, time-out and interval is
allowed. Optionally identification
of mailbox or semaphore.

unsigned int timeout
Time-out in system ticks.
Insignificant if no wait for time-out
is specified.

unsigned int xdata *message
Address of buffer (2 bytes) in
XDATA space where received
message shall be stored.
Insignificant if no wait for message
is specified.

Description

Send a token to semaphore.

This is the general wait function of RTX-
51/251.

Any combination of events may be
selected. If one of the specified events
occurs, then task is made ready again
(i.e. waiting for events is terminated).

For details see separate chapter about
‘os_wait’ !

82

Programmer’s Reference

0os_send_token

Task function

The system operation, os_send_token, sends one or more tokens to semaphore.
Prototype: signed char os_send_token (unsigned char semaphor €)

Parameter: semaphor e is the number of the desired semaphores.
Permissible values are 8..15.

Return Value: OK:
Token was sent successfully.

NOT_OK:
Function not completed successfully. One of the following
exceptions was determined:

= Specified semaphore does not exist.
m Semaphore contains already a token.
See Also: 0s_wait
Exewnple: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */
voi d userapp_task5 (void) _task_5 _priority_ 3 {
};.Vé send a token to semaphore 14 */
if (os_send_token (14) {

/* Token coul d not be sent to semaphore. */
. exception handling

RTX-51/RTX-251 83

Memory Management

Function Call Overview

Available functions are:

Function Name Parameter Description ‘
0s_create_pool unsigned int block_size Create and initialize a memory pool, which
Size of memory blocks to be contains blocks of a selectable size.

managed in pool.

void xdata *memory
Address of user defined memory
area to be used for pool.

unsigned int mem_size
Size of memory area to be used
for pool (number of bytes).

0s_get_block unsigned int block_size Obtain a block of memory from a pool.
Identification of pool, from which a
memory block shall be obtained.
Memory pools are identified by the
size of blocks they contain.

os_free_block unsigned int block_size Return a memory block to a pool.
Identification of pool, to which a
memory block shall be returned.
Memory pools are identified by the
size of blocks they contain.

void xdata *block
The starting address of the block
to be returned.

Example for a Buffer Pool Application

In many data collecting systems data is acquired by a fast, interrupt-driven routine
(typically an ISR) and then passed to one or more tasks for subsequent processing.

Basically there are two ways to implement the data passing between such an ISR
and tasks.

84 Programmer’s Reference

1. The complete collected data is written to one or more of the mailboxes that
tasks are waiting for.

2. Thecollected datais stored in a buffer and the buffer address is passed via one
or more mailboxes to tasks. A pool of buffersisused. Thetask which
processes the buffer data finally returns the freed buffer to the pool. The front-
end I SR requests a buffer from this buffer pool each timeit is activated.

Theimplementation of solution 1.) with RTX-51/251 is straightforward. But, for
an implementation of solution 2.) thefact that an ISR cannot request a buffer from
apool directly seems to be a disadvantage. This problem, however, may be solved
easily with RTX-51/251, when the following approach is used:

= One of the consuming tasks creates a buffer pool by use of "os_create pool”.
It then requests as many buffers fromit, as shall be used for data exchange
between tasks and the front-end ISR. It then writes all these buffer addresses
to amailbox (by "os_send_message").

m Thefront-end ISR obtains a buffer by reading a buffer address from this
mailbox (by "isr_recv_message"). It thenfillsin its collected data and sends
the buffer reference to a processing task (via a different mailbox).

m The processing task may now modify or consume this data. It then passes the
buffer reference to another task, if further processing is required. Or it may
return it to the mailbox containing all the free buffer addresses by an
"os_send_message’.

RTX-51/RTX-251 85

0s_create_pool
Task function

The system operation, os_create pool, produces a selectable number of blocksin a
memory pool. Theindividual blocks can be referenced or returned again
afterwards with the system functions "os_get_block™" or with "os_free block",
respectively. The memory area to be managed is defined by the user and is always
located in the XDATA address space. Several groups of various block sizes can
be defined corresponding to the requirements of the application. RTX-51/251 can
manage a maximum of 16 pools with up to 255 blocks each.

Prototype: signed char os_create pool (unsigned int block_size,
void xdata *memory,
unsigned int mem_size)

Par ameter: block_size defines the usable size of the individual blocks.
Only one pool can be defined per block size.

*memory designates the start address of the memory area to
be managed.

mem_size defines the size of the area to be managed.

Return Value: OK (0):
The memory pool was produced successfully.

NOT_OK (-1):
No memory pool could be produced. The following exception
occurred:

m The specified values for "block_size' and "mem_siz€" do
not permit the creation of a pool.
m 16 pools were already defined.

See Also: 0s_get_block, os free block, os_check poal

Note: In addition to the memory blocks, the management data of the
systemis also stored in the memory area available. An
additional two bytes are required by the system for each
defined memory block. For this reason, the number of

86

Programmer’s Reference

Example:

produced blocks is sometimes smaller than the value
calculated by "mem_size' DIV "block_size'.

#i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d pool _task (void) _task_ O _priority_ 0 {
int pool _menf1000];

if (os_create_pool (128, pool_nmem
si zeof (pool _nem)) {
error handling

RTX-51/RTX-251 87

0s_get block
Task function

The system operation, os_get_block, gets a memory block from the memory pool
referenced by the block size. A pool which contains the required block size must
have been created in advance (parameters "block size' for "os_create pool").

Prototype: void xdata *os_get_block (unsigned int block_size)

Parameter: block_sizeis the desired block size. A pool must exist which
contains the blocks of the required size.

Return Value: <>0:
Pointer to a memory block of desired size. The pointer
returned is of the type "void"; it can therefore point to every
data type (application specific)

=0
"null pointer”/ No block could be allocated. One of the
following errors was determined:

= Noblock is available (all used.)
= No pool exists which contains the blocks of the required

size.
See Also: os_create pool, os free block, os_check pooal
Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d pool _task (void) _task_ O _priority_ 0 {
int pool _nmenf1000];
int xdata *new ptr;

/* Create a nmenory pool with a bl ock size of */
/* 2 bytes */
if (os_create_pool (2, pool_nem
si zeof (pool _nenm)) {
. error handling

/* Request an el enent */

if ((new_ptr = os_get_block (2)) == 0) {
. error handling

}

/* Assign value 3291 to the received bl ock */
*new_ptr = 3291,

88 Programmer’s Reference

RTX-51/RTX-251 89

os_free block
Task function

The system operation, os_free block, returns a memory block to the associated
pool. After calling this function, the calling task must not execute any more
operations in this memory block.

Prototype: signed char os free block (unsigned int block_size,
void xdata * block)

Parameter: block_sizeis the actual block size. A pool must exist which
contains the blocks of the required size.

block designates the returned block.

Return Value: OK (0):
Block was returned correctly.

NOT_OK (-1):
Block could not bereturned. One of the following exceptions
occurred:

= Invalid block address.
m Block was never referenced with "os_get_block".

See Also: 0s_create pool, os get block, os_check pool

Note: The system operation ‘os_free block’ has limited capabilities
to detect wrong block addresses. Because of thisareturn
value of OK may bereturned, even if an invalid block address
was specified.

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

voi d pool _task (void) _task_ O _priority_ 0 {

int xdata *new ptr;
/* Request an el enent */

if ((new_ptr = os_get_block (2)) == 0) {
. error handling
}

/* Assign value 3291 to the received bl ock */
*new_ptr = 3291,

90 Programmer’s Reference

..... further processing

/* Return bl ock (depending on application) */
/* to pool */
os_free_block (2, new ptr);

RTX-51/RTX-251 91

Management of the System Clock

Function Call Overview

Available functions are:

Function Name Parameter Description

0s_set_slice unsigned int timeslice Sets a new system time interval.
New timeslice in number of
processor cycles.

92

Programmer’s Reference

os_set_slice
Task function

The system operation system, os_set_dlice, sets the system timeinterval; i.e., the
time period between the interrupts of the system clock. This period is the basic
systeminterval for all RTX-51/251 time-out functions and for the round-robin
scheduling.

Prototype: signed char os_set_dglice (unsigned int timeslice)

Parameter: timeslice defines the time interval in number of processor
cycles (corresponding to microseconds with a processor clock
of 12 Mhz). Permissible values are 1000..40000. Values
above 10000 are recommended.

After "os_start_system”, atimeinterval is automatically set to
20000.

Return Value: OK (0):
Timeinterval was reset.

NOT_OK (-1):
Function not executed since an invalid value specifies time

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {

os_set_slice (3000);

RTX-51/RTX-251

93

Debug Functions

Function Call Overview

Available functions are:

Function Name

os_check_tasks

os_check_task

os_check_mail-boxes

os_check_mailbox

os_check_sema-
phores

os_check_pool

Parameter

t_rtx_alltasktab xdata *table
Address of a memory area where
a task state table can be stored.

unsigned char task_number
Identification (number) of task.

t_rtx_onetasktab xdata *table
Address of a memory area where
a task state table can be stored.

t_rtx_allmbxtab xdata *table
Address of a memory area where
a mailbox state table can be
stored.

unsigned char mailbox

Identification (number) of mailbox.

t_rtx_onembxtab xdata *table
Address of a memory area where
a mailbox state table can be
stored.

t_rtx_allsemtab xdata *table
Address of a memory area where
a semaphore state table can be
stored.

os_check_sema-phore unsigned char semaphore

Identification (number) of
semaphore.

t_rtx_onesemtab xdata *table
Address of a memory area where
a semaphore state table can be
stored.

unsigned int block_size
Identification of pool (size of
blocks contained in it).

t_rtx_blockinfo xdata
* table
Address of a memory area where
a pool state table can be stored.

Description

Extracts task state information from RTX
system data. This data is stored at a user
declared memory area.

Extracts detailed status information about
a particular task from RTX system data.
This data is stored at a user declared
memory area.

Extracts mailbox state information from
RTX system data. This data is stored at
a user declared memory area.

Extracts detailed status information about
a particular mailbox from RTX system
data. This data is stored at a user
declared memory area.

Extracts semaphore state information
from RTX system data. This data is
stored at a user declared memory area.

t_rtx_onesemtab xdata *table
Address of a memory area where a
semaphore state table can be stored.

Extracts detailed status information about
a particular memory pool from RTX
system data. This data is stored at a user
declared memory area.

94

Programmer’s Reference

os_check_tasks
Task function

The system operation, os_check_tasks, returns information about the status of all
tasks in the system. Theinformation is stored in atable (in XDATA memory), to
be declared by the user.

Prototype: signed char os_check_tasks
(t_rtx_alltasktab xdata *table)

Parameter: *table points to a table (in XDATA memory) which was
declared by the user. The system call stores the determined
information in this table.

The table contains the following structure (definedin
RTX51.H/RTX251.H).:

typedef struct {
unsigned char task_number;
unsigned char state;
t_rtx_alltasktab[19];

"task_number" designates the number assigned to the task in
the C51/C251 task declaration.

"state" designates the task state:

K_READY Task isREADY

K_RUNNING Task is RUNNING (ACTIVE)
K_BLOCKED Task is WAITING (BLOCKED)
K_DELETED Task does not exist or is deleted

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
Function not executed.

See Also: 0s_check task

RTX-51/RTX-251 95

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t_rtx_alltasktab xdata table;

os_check_t asks (&t able);

96

Programmer’s Reference

0s_check_task
Task function

The system operation, os_check_task, returns detailed information about a certain
task. Theinformation is stored in atable, to be declared by the user.

Prototype: signed char os_check_task (unsigned char task_number,
t_rtx_onetasktab xdata *table)

Parameter: task_number istheidentification of the task where
information is to be returned.

tableis atable which was declared by the user. The system
call stores the determined information in this table.

The table contains the following structure (defined in
RTX51.H/ RTX251.H):

typedef struct {
unsigned char state;
unsigned int flags,
} t_rtx_onetasktab;

"state" designates the task state:

K_READY Task isREADY.

K_RUNNING Task isRUNNING (ACTIVE).
K_BLOCKED Task isWAITING (BLOCKED).
K_DELETED Task does not exist or is deleted.

"flags" contains the signal and all wait flags (value=1 -> task
waits). Theindividual bits are assigned as depicted below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o (o (0o (0 (0o (0 [0 [SR (M2 M1 [MO (WT [WS [WI [WM[WN

SR = Signal flag (stored signal for task)
WT = Task waits for time-out/interval
WS = Task waits for signal

RTX-51/RTX-251 97

Wi = Task waits for interrupt
WM/WN =00: Task waits not for mailbox/semaphore
=01: Task waitsfor semaphore
=10: Task waits for message
(mailbox READ wait list)
=11: Task waitsfor room in message list
(mailbox WRITE wait list)

MO, M1 and M2 contain the identification of the type of
mailbox/semaphore for which the task waits (not defined if
task does not wait for mailbox/semaphore).

Permissible values are: 0..7. If WM/WN indicates a
semaphore wait, then 8 has to be added to this number to
obtain the semaphore number.

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
Function not executed.
See Also: 0s_check tasks
Example: #incl ude <rtx51. h> /* Use rtx251. h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t _rtx_onetasktab xdata tabl e;

os_check_task (12, &table);

98

Programmer’s Reference

os_check_mailboxes
Task function

The system operation, os_check_mailboxes, returns information about the state of
al mailboxes. Theinformation is stored in atable (in XDATA memory), to be
declared by the user.

Prototype: signed char os_check_mailboxes (
t_rtx_allmbxtab xdata *table)

Parameter: tableis atable declared by the user (in XDATA memory).
The system call stores the determined information in this
table.

The table contains the following structure (defined in
RTX51.H/ RTX251.H):

typedef struct {
unsigned char message cnt;
unsigned char read_task_cnt;
unsigned char write_task_cnt;
} t_rtx_almbxtab[8];

Thefollowing is allocated for each mailbox: three counter
values for the number of stored messages (message cnt),
number of tasks waiting for messages (read_task_cnt), and
number of tasks which are waiting to store a message
(write_task_cnt).

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
The function could not be executed.
See Also: 0s_check_mailbox
Example: #i ncl ude <rtx51. h> /* Use rtx251. h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t_rtx_all mbxtab xdata tabl e;

RTX-51/RTX-251 99

if (os_check_nmil boxes (& able)) {
error handling
}

. Evaluation of the table

100

Programmer’s Reference

os_check_mailbox
Task function

The system operation, os_check_mailbox, returns detailed information about the
state of a certain mailbox. Theinformation is stored in atable (in XDATA
memory), to be declared by the user.

Prototype: signed char os_check_mailbox (unsigned char mailbox,
t_rtx_onembxtab xdata *table)

Par ameter : mailbox is the identification of the desired mailbox. Values
between 0 and 7 are allowed, according to the eight
predefined mailboxes.

*table points to a table (in XDATA memory) which was
declared by the user. The system call stores the determined
information in this table.

The table contains the following structure (defined in
RTX51.H/ RTX251.H):

typedef struct {
unsigned char message cnt;
unsigned char read_task_cnt;
unsigned char write_task_cnt;
unsigned char wait_tasks[16];
unsigned int messages[8];

} t_rtx_onembxtab;

Thefollowing is allocated for the desired mailbox: the three
count values for number of stored messages (message_cnt),
number of tasks waiting for messages (read_task_cnt), and
number of tasks waiting to store a message (write_task_cnt).

Since either "write_task_cnt" or "read task_cnt" is equal to
zero, only asinglelist is necessary for the waiting tasks
(wait_tasks). Theidentifications of the waiting tasks,
assigned according to the waiting period (index O for longest
waiting task), are stored in this.

RTX-51/RTX-251

101

Return Value

See Also:

Example:

Stored messages are placed in the message list (messages)

OK (0):
Function executed successfully.

NOT_OK (-1):
Function not executed.

os_check _mailboxes

#i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t _rtx_onenbxtab xdata tabl e;

if (os_check_mail box (2, & able)) {
error handling
}

. Evaluation of the table

102 Programmer’s Reference

os_check _semaphores
Task function

The system operation, os_check _semaphores, returns information about the state
of all semaphores. Theinformation is stored in atable (in XDATA memory), to

be declared by the user.
Prototype: signed char os_check_semaphores (
t_rtx_allsemtab xdata *table)
Parameter: tableis atable declared by the user (in XDATA memory).
The system call stores the determined information in this
table.

The table contains the following structure (defined in
RTX51.H/ RTX251.H):

typedef struct {
unsigned char status;
} trtx_allsemtab[8];

Thefollowing is allocated for each semaphore: a status byte,
which can accept one of three different values:

0 = token stored
1 = no token stored / no waiting task(s)
2 = no token stored / waiting task(s)t

Use (semaphore_number - 8) asindex to this table.

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
The function could not be executed.

See Also: os_check_semaphore

RTX-51/RTX-251 103

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t_rtx_allsentab xdata tabl e;

if (os_check_semaphores (& able)) {
error handling
}

. Evaluation of the table

104

Programmer’s Reference

os_check _semaphore
Task function

The system operation, os_check_semaphore, returns detailed information about the
state of a certain semaphore. Theinformation is stored in atable (in XDATA
memory), to be declared by the user.

Prototype: signed char os_check_semaphore
(unsigned char semaphore,
t_rtx_onesemtab xdata *table)

Parameter: semaphor e is the identification of the desired semaphore.
Values between 8 and 15 are allowed, according to the eight
predefined semaphores.

*table points to a table (in XDATA memory) which was
declared by the user. The system call stores the determined
information in this table.

The table contains the following structure (defined in
RTX51.H/ RTX251.H):

typedef struct {
unsigned char token_flag;
unsigned char task_count;
unsigned char wait_taskg[15];
} t_rtx_onesemtab;

Thefollowing is allocated for the desired semaphore: the state
of the token flag (1=token available/0=no token), number of
tasks waiting for token(s) and a list of all waiting tasks, if
any.

Use (semaphore_number - 8) asindex to this table.

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
Function not executed.

RTX-51/RTX-251 105

See Also: 0s_check _semaphores

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t_rtx_onesent ab xdata tabl e;

if (os_check_semaphore (12, &table)) {
error handling
}

. Evaluation of the table

106

Programmer’s Reference

os_check_pool
Task function

The system operation, os_check_poal, returns information about the use of all
blocks of a memory pool. Theinformation is stored in a table, to be declared by
the user.

Prototype: signed char os_check_pool (unsigned int block_size,
t_rtx_blockinfo xdata *table)

Par ameter : block_size sdlects the pool where information is to be
returned. "block_size" is the block size of the desired pool.

tableis a table which was declared by the user. The system
call stores the determined information in this table.

The table contains an entry for each block of the pool and
contains the following structure (defined in RTX51.H/
RTX251.H):

typedef struct {

void xdata *block;

signed char task_number;
} t_rtx_blockinfo[255];

"block™ identifies a certain block (non-existent blocks are
identified with a null pointer).

"task_number" is the identification of a task which controls
the block.

Return Value: OK (0):
Function executed successfully.

NOT_OK (-1):
Function not executed.

RTX-51/RTX-251 107

Example: #i ncl ude <rtx51. h> /* Use rtx251.h for RTX-251 */

void xyz_task (void) _task_ O _priority_ 0 {
t _rtx_bl ockinfo xdata tabl e;

os_check_pool (2, &table);

. Evaluation of the table

RTX-51/RTX-251 109

Chapter 5. Configuration

By means of configuration file RTXSETUP.DCL, RTX-51/251 can be adapted to
various members of the 8051/MCS 251 processor family and to application-
specific requirements.

The easiest way to do the configuration is by use of the configuration utility
RTXSETUP.EXE under MS-WINDOWS. This setup program displays the
current contents of the configuration file RTXSETUP.DCL. By useof amenu
display, all the user configurable values may be set.

Thefollowing system values can be configured above all:

Type of 8051/MCS 251 family CPU used
8051/MCS 251 hardware timer to be used for the system clock
Initial interrupt enable register values

Fast task stack- and environment size (RTX-51)
Standard task context stack size (RTX-51)
Task stack size (RTX-251)

Reentrant stack size

Timesharing option (round-robin scheduling)
Bankswitching support (RTX-51)

Interrupt table base address

Mailbox support

Semaphore support

Graphical Configuration Utility

The configuration utility allows an easy modification of all of the values above. It
uses a menu display to show the current contents of the configuration file
RTXSETUP.DCL. All these values may be modified just by use of the cursor
key/mouse and the numeric keypad.

The graphical configuration utility may be run under MS-WINDOWS 3.1, 3.11,
95 or NT.

The recommended way to use the configuration utility isto add it to the pull-down
menu of the nVision integrated development environment. This may be done by

110

Configuration

the user during theinstallation process or any timelater. A detailed description of
how to do thisis contained in "Chapter 2. Installation”.

On the other side the configuration utility RTXSETUP.EXE may be started like
any other EXE file under, for example, the * Windows File Manager* or
“Windows Explorer* (see Windows manuals for details about how to start an
EXE file).

In the following description it is assumed that RTXSETUP.EXE was added to
the pull-down menu of the nVision IDE by the user.

Running the Configuration Utility

The configuration utilities for RTX-51 and RTX-251 are designed in the same
way. They differ only in particular configuration options explained in the
sections “ Configuration Options for ...“ below.

- Start up the configuration utility RTXSETUP.EXE from the nVision
integrated development environment (IDE).

- Now afile selection window allows to sdlect the particular configuration file
to modify. Thedefault fileis RTXSETUP.DCL located in the directory the
configuration utility was started up.

- Upon a successful file sdection the main configuration menu appears. It
shows the different configuration options. A particular option may be
sdected by clicking on it with your mouse.

- When you arefinished, click on the OK button to store a modified
configuration file. A display box will tell you that it has been modified
successfully.

- When you need help, then click on the Help button. Context sensitive help is
available by positioning the cursor on a particular option and pressing the F1

key.

- If you want to abort the configuration, a click on the CANCEL button will
close the active window. Repest this step until the top window is closed. A
display box will confirm this premature program termination.

RTX-51/RTX-251 111

- Seethe chapter “ Configuration Options’ below for a full discussion of all
configuration options.

I mportant Notes:

The configuration utility RTXSETUP.EXE modifies the selected configuration
file, but does not reassemble the module RTXCONF.A51. Thefollowing
command is required to re-build RTXCONF.OBJ:

RTX-51:
A51 RTXCONF. A51 DEBUG

RTX-251:

A251 RTXCONF. A51 DEBUG

Please note, that the RTXCONF.A51 expects a configuration include file named
RTXSETUP.DCL.

Configuration Options

When the RTXSETUP utility is started up and a valid configuration fileis
selected, then the setup menu is displayed.

112

Configuration

BH RTX Configuration File: M:\RTX\SRC51V5\RTXSETUP.DCL

;----Qeneral _

CPU Type (RTX Code): I1 7 Int Table Base (hex): I|]|]|]|]
| RTX System Timer:

ystem fimer 102 | IE Init ¥alue (hex): lnn
Use Round-Robin: I IEN1 Init Yalue (hex): ;m]
Use Bankswitching: I IENZ Init Yalue (hex): im]

[~ Stack Configuration [~ System Functions —

Fast Task Stack: 1|]1 2 Use Mailbox Support: v

Standard Task Stack: 1032 Use Semaphore Support: ¥
Reentrant Stack Size: ;|]5|] Use Idle Mode: r
OK Help Cancel

Figure 5: Configuration menu for RTX-51

P& RTX Configuration File: M:\RTX\SRC251V1\RTXSETUP.DCL

—General —Interrupt Options
CPU Type (RTX Code): I|]1 Int Table Base (hex): I|]|]|]|]
RT¥ System Timer:]m] IE Init Yalue (hex): I|]|]
. IEN1 Init Yalue (hex): im]
Use Round-Robin:
38 Lalna-obin L IENZ Init Value (hex): |00
—Stack Configuration — — System Functions
: Use Mailbox Support: ™
Task Stack Size: 1
a3 K =126 e Use Semaphore Support: ¥
Reentrant Stack Size: 1054 Use Idle Mode: r
OK Help Cancel

Figure 6: Configuration menu for RTX-251

The configuration menu shows different option groups for a configuration.

GENERAL:

RTX-51/RTX-251 113

CPU type:

Enter herethe RTX code appropriate for your hardware. This number may be
determined from a table shown in the section “?RTX_USE IDLE:

This flag determinesif the CPU is switched to idle mode during systemidle time.
During idle mode the program execution is stopped, while al peripherals including
theinterrupt controller stay active. If switched OFF, then a busy wait loop is done
during system idletime.

Please note, that not all CPUs support this idle mode function (see manufacturer’s
data sheet). Do not sdect this option if the CPU is not able to support it.

Number of the Processor Type Used ” (page 128).

RTX System Timer:

Enter here the number of the hardware timer to be used by RTX-51/251 as the
system clock source. Depending on the particular CPU typetimer O, 1 or O, 1 and
2 may be sdected. If timer 2 is sdlected and the specified CPU does not support
this option, then an error message will appear while assembling RTXCONF.A51.

Use Round-Robin:

Click on this box to switch option On/Off. If the time sharing option is enabled,
tasks of priority O will be switched in a round-robin scheme. This switching will
take place each time a system interval (systemtick) ends and is restricted to ready
tasks of priority O.

Use Bankswitching: (for RTX-51 only)

Click on this box to switch option O/Off. If the C51 bank switching schemeis to
be used, then this option must be switched ON. Otherwise some memory space
and execution time can be saved when this option is switched OFF. Please note,
that the switch ?B_RTX contained in file L51_BANK.A51 (V1.4b up required)
hasto be set to 1, if bank switching is used. Seethe PK51 User’s Manuals for
details about the bank switching implementation.

STACK CONFIGURATION:

Fast Task Stack: (for RTX-51 only)

114 Configuration

Enter here the number of the bytes to be used per Fast Task by stack and
environment size. More details about this configuration are shown in the section
“Indirect-Addressable Internal Memory (IDATA) ” (page 117).

Standard Task Stack: (for RTX-51 only)

Enter here the number of bytes available per Standard Task to save stack datain
the context. More details about this configuration are shown in the section
“External Memory (XDATA)” (page 119).

Task Stack Size: (for RTX-251 only)

Enter here the number of the bytes to be used per Standard or Fast Task by stack
and environment size. More details about this configuration are shown in the
section “ Direct-Addressable External Memory (EDATA)” (page 121).

Reentrant Stack Size:

Enter here the number of bytes available per Task to keep its private reentrant
stack. More details about this configuration are shown in the section “ External
Memory (XDATA)” (page 119 for RTX-51, page 119 for RTX-251).

INTERRUPT OPTIONS

Interrupt Table Base

Enter here the desired base address for the 8051 interrupt table. For a standard
system this value is 0000H.

Note that this number has to be entered in a hexadecimal representation.

IE Initidlization Value

Enter heretheinitial valuefor the |E register. RTX-51 setsall unused ENABLE
bitsto 0 in the INTERRUPT ENABLE masks of the processor. For some 8051
processors, certain bits of the INTERRUPT ENABLE masks are used for
purposes other than to enable/disable the interrupt sources (e.g., for 80515, the
watchdog start bit in the IEN1 register). The respectiveinitial value of these types
of special bits can be defined using this constant.

Note that this number has to be entered in a hexadecimal representation.

RTX-51/RTX-251 115

IEN1 Initialization Value

Enter heretheinitial value for the IEN1 register. RTX-51 sets all unused
ENABLE bitsto 0 in the INTERRUPT ENABLE masks of the processor. For
some 8051 processors, certain bits of the INTERRUPT ENABLE masks are used
for purposes other than to enable/disable the interrupt sources (e.g., for 80515, the
watchdog start bit in the IEN1 register). The respectiveinitial value of these types
of special bits can be defined using this constant.

Note that this number has to be entered in a hexadecimal representation.

IENZ2 Initialization Value

Enter heretheinitial value for the IEN2 register. RTX-51 sets all unused
ENABLE bitsto 0 in the INTERRUPT ENABLE masks of the processor. For
some 8051 processors, certain bits of the INTERRUPT ENABLE masks are used
for purposes other than to enable/disable the interrupt sources (e.g., for 80515, the
watchdog start bit in the IEN1 register). The respectiveinitial value of these types
of special bits can be defined using this constant.

Note that this number has to be entered in a hexadecimal representation.

SYSTEM FUNCTIONS

Use Mailbox Support:

Click on this box to switch option On/Off. If switched OFF, then no FIFO space
is alocated, and any operation that involves a mailbox FIFO will return an error
status.

Use Semaphore Support:

Click on this box to switch option On/Off. If switched OFF, then no FIFO space
isalocated. Inthis case, any operation that involves a semaphore FIFO will
return an error status.

Use ldle Mode:

Click on this box to switch option O/Off. If switched ON, then the CPU is set to
idlemode. During idle mode the program execution is stopped, while all
peripherals including the interrupt controller stay active. If switched OFF, then a
busy wait loop is done during systemidle time.

116 Configuration

Please note, that not all CPUs support this idle mode function (see manufacturer’s
data sheet). Do not sdect this option if the CPU is not able to support it.

Exiting from Configuration:

Upon completing the configuration, the configuration utility may be exited by
clicking on the OK button.

The successful modification of the selected configuration file is confirmed by a
message box:

Message Nr. 1 m

Data sawved |

Memory Assignment for RTX-51

The following section presents a general overview on the memory assignment of
RTX-51. For RTX-251 users a similar description can be found in a following
section.

Values which can be adapted by the user in the configuration file are characterized
as such.

Direct-Addressable Internal Memory (DATA)
The DATA area of the processor is assigned by RTX-51 in the following way:

m Register bank O for standard tasks
--> 8 bytes

m Register banks 1, 2 and 3 for fast tasks or C51 interrupt functions (if defined)
--> Maximal 3 * 8 bytes

RTX-51/RTX-251 117

m 31 bitsfor system flags in the bit-addressable area (segments
RTX?RTX_BIT_REL-BYTE_SEG, RTX?RTX_BIT_SEG and
PRTX?FLT_BITSEG)

m 35 bytesfor general system variables (segment 2RTX?RTX_RELBYTE_SEG
and ?RTX?PBP)

m 3 bytesfor each INTERRUPT ENABLE register supported by the 8051
processor are used. (segment ZRTX2ANT_MASK?RTXCONF)

--> 3 bytes for processors with one |E register (e.g., 8051)
--> 6 bytes for processors with two |E registers (e.g., 80C515)
--> 9 bytes for processors with three |E registers (e.g., 80C517)

Indirect-Addressable Internal Memory (IDATA)

RTX-51 stores the three maximum possible fast task stacks (corresponding to the
maximum three active fast tasks in the system) and the stack for the standard tasks
inthe IDATA area of the 8051. The stacks are normally stored at the end of the
IDATA area. Inthiscase, theindividual stack areas are assigned corresponding to
the 8051 conventions (lowest to highest addresses).

Segment ?STACK

Size given by the remaining free
memory

(minimal 20 bytes)

Segment 2RTX?FTASKDATA?3
Size configurable with
RTX_INTSTKSIZE

(minimal 9 bytes)

Segment 2RTX?FTASKDATA?2
Size configurable with
RTX_INTSTKSIZE

(minimal 9 bytes)

118 Configuration

Segment 2RTX?FTASKDATA?L
Size configurable with
RTX_INTSTKSIZE

(minimal 9 bytes)

Figure 7. Stack-Layout for RTX-51

m Segments PRTX?FTASKDATA?Y/2/3:

The fast tasks stack areas are each used from one individual fast task.
Only the stack pointer must be reset during a task change (especially fast
task change possible). The stack area of afast task is used in the
following manner by RTX-51:

m 3 bytes arerequired for internal purposes
m 2 bytes contain the start address of the tasks

m 4 bytes (maximum) are required for RTX-51 system calls

The size (in bytes) of the fast task stacks can be defined in the configuration
fileusing the constant ?PRTX_INTSTKSIZE. It should not be selected smaller
than 9 bytes.

m Segment ?STACK:

Segment ?STACK is used by RTX-51 for all standard task stacks. In
the case of atask change, the current contents of this stack segment must
be stored in the XDATA RAM in the task context of the corresponding
task. Afterwards, the stack of the new task must be fetched in this
segment (see section "External Memory (XDATA)" below).

Segment ?STACK is used by RTX-51 in the following way:

m 9 bytes are assigned by the system clock (in the case of periodic occurrence of
the system clock interrupt)

m 4 bytes arerequired for RTX-51 system calls assigned by RTX-51 if the
standard task is interrupted by an interrupt

RTX-51/RTX-251 119

m 2 bytes contain the start

The minimum size of the standard task stack is 20 bytes. The size cannot be
configured directly. Instead, the entire IDATA memory is used for the
standard task stack. If thisspaceis smaller than 20 bytes, the linker issues an
error message.

External Memory (XDATA)

The XDATA memory of the processor is assigned by RTX-51 with the following
areas fixed in size (cannot be configured):

= Approximately 825 bytes for common system variables (segments
RTX?RTX_SYS PAGE, RTX?RTX_AUX_PAGE , RTX_SEM_PAGE
and RTX?RTX_MBX_PAGE). If semaphore support is not configured, then
128 bytes can be saved. If mailbox support is not configured, then 256 bytes
can be saved.

= Sggment 2RTX?USER_NUM_TABLE?S with a size corresponding to the
largest used task number + 1

The following segment whose size can be configured is stored in XDATA memory
by RTX-51 for each standard task:

Segment 2RTX?TASKCONTEXT?X
where x=task number

Areafor thereentrant stack of the Size configurable with
standard task (compact reentrant stack) RTX_EXTRENTSIZE
(spaceisonly reserved if
reentrant functions are

used)
Size max. 256 bytes Areafor storing thetask stack during a Size can be configured
task change with
PRTX_EXTSTKSIZE
Areafor storing registers during a task Constant size 17 bytes

change

Figure 8: Standard Task Context-Layout for RTX-51

Segment 7RTX?TASKCONTEXT ?x (where x=task number) is divided into three
parts:

120 Configuration

m Areafor storing the processor registers and RTX-51 status information. This
area has a constant size of 17 bytes.

m Areafor storing thetask stack. The current contents of segment ?STACK are
copied into this area during a task change. The size of this area is selected with
the constant 2RTX_EXTSTKSIZE. It is purposeful that the size of segment
?STACK somewhat agrees with this. This area is assigned with addresses
(lowest to highest) corresponding to the 8051 stack conventions.

m Areafor thereentrant stack of the C51 functions with the reentrant-attribute.
Thisareais as stored by RTX-51 only if reentrant functions actually exist in
the system. This areais assigned with addresses (highest to lowest),
corresponding to the C51 conventions.

NOTE: RTX-51 only supportsreentrant functionsin the
COMPACT model!

A context segment isstored in XDATA for each standard task. This segment
isrequired for storing the registers and the stack during a task change. If
necessary, this segment also contains the reentrant stack for the standard
task.

The size of the area for thetask stack and the reentrant stack can be
configured by theuser. The entire segment isrestricted to a size of maximum
256 bytes!

If the size of this area is exceeded, the linker issues a war ning message.

If reentrant functions are used in the system, the following segment, whose size
can be configured, is stored in XDATA memory for each fast task by RTX-51:

Segment RTX?FTASKCONTEXT?1

PRTXPFTASKCONTEXT?2
PRTXPFTASKCONTEXT?3
Size max. 256 bytes Areafor thereentrant stack of thefast Size configurable with
task (compact reentrant stack) ?PRTX_EXTRENTSIZE

(spaceisonly reserved if
reentrant functions are

used)

Figure 9: Fast Task Context-Layout for RTX-51

RTX-51/RTX-251 121

If reentrant functions wer e declared in the system, a separate segment is
stored in XDATA memory for the reentrant stack for each fast task.

Memory Assignment for RTX-251

The following section presents a general overview on the memory assignment of
RTX-251. For RTX-51 users asimilar description can be found in a preceding
section.

Values which can be adapted by the user in the configuration file are characterized
as such.

Direct-Addressable Internal Memory (DATA)

The DATA area of the processor is assigned by RTX-251 in the following way:

m Register bank O for all tasks
--> 8 bytes

m Register banks 1, 2 and 3 for C251 interrupt functions (if defined)
--> Maximal 3 * 8 bytes

m 27 hitsfor system flags in the bit-addressable area (segments
RTX?RTX_BIT_REL-BYTE_SEG and 2RTX?RTX_BIT_SEG)

m 22 bytesfor general system variables (segment 2RTX?RTX_RELBYTE_SEG
and ?RTX?PBP)

m 2 bytesfor each INTERRUPT ENABLE register supported by the 8051
processor are used. (segment PRTX?2ANT_MASK?RTXCONF).

--> 2 bytes for processors with one |E register (e.g., 8xC251SB)
--> 4 bytes for processors with two | E registers
--> 6 bytes for processors with three |E registers

Direct-Addressable External Memory (EDATA)

The EDATA area of the processor is assigned by RTX-251 in the following way:

122 Configuration

m 32 bytesfor general system variables (segment 2RTX?RTX_EDATA_SEG).
m Task context save areas (one per declared task):

Free stack space
(stack grows from lower to higher
addresses)

Context data of task
(a maximum of approx. 32 bytes)

Stack data of task

(temporary stored data by Push/Pop
and return addresses of subroutine
calls)

Saved stack pointer (2 bytes)

Figure 10: RTX-251 Task Context Layout (task not running)

Each task uses its own private stack area. Upon a task switch all the context data
belonging to atask is stored on its stack and the stack pointer is changed to the
next task’s stack area.

If atask isinterrupted by a C251 interrupt function, then the interrupt function
uses theinterrupted task’ s stack area.

Depending on the task state and the occurrence of interrupts for C251 interrupt
functions basically the context layouts shown in Figure 10, Figure 11 and Figure
12 exist.

Free stack space
(stack grows from lower to higher

RTX-51/RTX-251

123

addresses)

Stack data of task
(temporary stored data by Push and
return addresses of subroutine calls)

Reserved (2 bytes)

Figure 11: RTX-251 Task Context Layout (task running)

Size of task context data and saved SPX:

The system constant ?RTX_REGSIZE indicates how many
bytes are required to store a full task context including the stack
pointer. This constant is declared public and equals to about 32
bytes. Itsvalueis given by the context storage scheme and can
not be changed by the user.

Size of task stack area:

This includes the * Stack data of task’ and the ‘ Free stack
space, as shown in the pictures above. Each declared task gets
assigned its private context area by C251/L.251. Itssizeis
determined by the sum of the two constants 2RTX_REGSIZE
and ?RTX_STKSIZE. Thetask stack space can be configured
by the user.

The size (in bytes) of the task stack area can be defined in
the configuration file using the constant ?RTX_STKSIZE. It
should not be selected smaller than 32 bytes.

Such an area will be allocated by L 251 for each declared
task.

Free stack space
(stack grows from lower to higher
addresses)

124 Configuration

Stack data of C251 interrupt
function (temporary stored data by
Push and return addresses of
subroutine calls)

Stack data of task
(temporary stored data by Push and
return addresses of subroutine calls)

Reserved (2 bytes)

Figure 12: RTX-251 Task Context Layout (task running, but currently
interrupted by a C251 interrupt function)

External Memory (XDATA)

The XDATA memory of the processor is assigned by RTX-251 with the following
areas:

= Approximately 825 bytes for common system variables (segments
RTX?PRTX_SYS PAGE, RTXRTX_AUX_PAGE , RTX_SEM_PAGE
and RTX?RTX_MBX_PAGE). If semaphore support is not configured, then
128 bytes can be saved. If mailbox support is not configured, then 256 bytes
can be saved.

= Sggment 2RTX?USER_NUM_TABLE?S with a size corresponding to the
largest used task number + 1

m Task reentrant stack areas (one per declared task):

Reentrant stack data of task
(stack grows from higher to lower
addresses)

RTX-51/RTX-251 125

Free stack space

Figure 13: RTX-251 Reentrant Stack Layout (task running or blocked)

Reentrant stack data of task
(stack grows from higher to lower
addresses)

Reentrant stack data of C251
interrupt function

Free stack space

Figure 14: RTX-251 Reentrant Stack Layout (C251 interrupt function running)

The segment (shown in Figure 13 and Figure 14), whose size
can be configured, is stored in XDATA memory by RTX-251
for each task:

The size of the reentrant stack area can be defined in the
configuration file using the constant
?RTX_REENT_STKSIZE. Dueto the page addressing
mode its sizeisrestricted to a maximum of 256 bytes!

Such an area will be allocated by L 251 for each declared
task.

126

Configuration

If the size of this area is exceeded, the linker issues a warning
message.

If no reentrant functions wer e declared in the system, the
size of this segment is shrinked to the minimum value of 1
byte.

Summary of the User-Configurable
Values

Thefollowing system constants are defined in configuration file RTXCONF.A51.
RTX-51/251 can be adapted to application-specific requirements, by means of
these values:

s ?RTX_CPU_TYPE:
RTX code of microprocessor used. For adetailed list of all supported
8051/MCS 251 family microprocessors see the following chapter.

s ?RTX_SYSTEM_TIMER:
=0: If hardware Timer O of the processor is to be used (default)
=1: If hardware Timer 1 of the processor is to be used.
=2: If hardware Timer 2 of the processor is to be used (not supported by
all CPU’s: see comments contained in file RTXSETUP.DCL).

m ?RTX_IE_INIT, 2RTX_IENL_INIT, 2RTX_IEN2_INIT:
RTX-51/251 sets all unused ENABLE bitsto 0 in the INTERRUPT ENABLE
masks of the processor. For some 8051/MCS 251 processors, certain bits of
the INTERRUPT ENABLE masks are used for purposes other than to
enable/disable theinterrupt sources (e.g., for 80515, the watchdog start bit in
the IEN1 register). The respectiveinitial value of these types of special bits
can be defined using these three constants.

However, the actual INTERRUPT ENABLE bits must not be set to 1 with
these constantsl RT X-51/251 must contain sole control over the
INTERRUPT ENABLE bits.

m RTX_INTSTKSIZE (for RTX-51 only):
Stack size for each fast task (see section "Indirect-Addressable Internal
Memory (IDATA)", page 117).
Default valueis 12 bytes.

RTX-51/RTX-251 127

m 7RTX_EXTSTKSIZE (for RTX-51 only):
Size of the areain the XDATA memory to store the standard task stack (see
section "External Memory (XDATA)", page 119).
Default value is 32 bytes.

m 7RTX_EXTRENTSIZE (for RTX-51 only):
Size of the reentrant stack. Thisisonly required if reentrant functions are used
in the system (see section "External Memory (XDATA)", page 119).
Default value is 100 bytes.

m RTX_STKSIZE (for RTX-251 only):
Stack size for each task system (see section "Direct-Addressable External
Memory (EDATA)", page 121).
Default value is 64 bytes.

m ?RTX_REENT_STKSIZE (for RTX-251 only):
Size of the reentrant stack. Thisisonly required if reentrant functions are used
in the system (see section "Reentrant Functions', page 34).
Default value is 64 bytes.

m RTX_TIMESHARING:
=0: Thetask switching without round-robin scheduling is used.
=1: Round-robin scheduling is used.

m ?RTX_BANKSWITCHING (for RTX-51 only):
=0:
No bank switching support is provided by RTX-51.
Usethis setting if your application does not require bank switching. Some code
and data dedicated to this purposeis left away in this case.
=1:
The BL51 bank switching schemeis supported by RTX-51. SeeBL51
documentation for more details about using a bank switching in your hardware.

= RTX_INTBASE:
Normally the interrupt tableis located at address 0000H. For special hardware
configurations, like flash EPROM systems, interrupts may need to be rerouted
to atable at a different address. If an address different than O000H is used,
then the user has to supply code to reroute each used interrupt vector to an
address with the offset declared as PRTX_INTBASE.

= ?RTX_MAILBOX_SUPPORT:
This flag determines if memory is allocated for the mailbox FIFO's or not. 1f
set to 0, then no wait for a mailbox is possible. Associated RTX calls will
return aNOT_OK in this case.
Set to 1 if mailbox functions are to be used.

128 Configuration

m ?RTX_SEMAPHORE_SUPPORT:
This flag determines if memory is allocated for the semaphore FIFO’s or not.
If set to O, then no wait for a semaphoreis possible. Associated RTX calls will
return aNOT_OK in this case.
Set to 1 if semaphore functions are to be used.

s ?RTX_USE_IDLE:
This flag determinesif the CPU is switched to idle mode during systemidle
time. During idle mode the program execution is stopped, while all peripherals
including the interrupt controller stay active. If switched OFF, then a busy
wait loop is done during system idle time.
Please note, that not all CPUs support this idle mode function (see
manufacturer’s data sheet). Do not sdect this option if the CPU is not ableto
support it.

Number of the Processor Type Used

Theindividual members of the 8051/M CS 251 family differentiate between one
another for RTX-51/251 in number and addresses of the INTERRUPT ENABLE
registers and in the assignment of the interrupt number to ENABLE bits.

Configuration file RTXCONF.A51 contains the required data for all different
processors. To sdect a certain processor, the configuration file must be
reassembled with the Keill 8051/MCS 251 Assembler. Beforethisis donethe
desired CPU number has to be defined in the configuration header file
(RTXSETUP.DCL).

Supported types for RTX-51 are:

Manufacturer / Model ‘ 'XX'

Intel/Siemens/Philips/AMD/MHS/OKI 8051, 8031, 8751, 80C31, 80C51,87C51 1
Intel/Siemens/AMD 80C52, 80C32 2
Intel 8044AH, 8344AH, 8744AH 1
5
8

Intel B0C51FA/FB, 83C51FA/FB, 87C51FC
Intel 80C152, 83C152

Intel 80C51GB, 83C51GB, 87C51GB 13
Intel 88F51FC, 83F51FC 14
Siemens 80515, 80C515, 80535, 80C535
Siemens 80C517, 80C537

Siemens 80C517A, 80C517A-5

RTX-51/RTX-251 129

Siemens 80512/80532 15
Philips 80C451, 82C451, 80C851, 83C851

Philips 80C552, 83C552

Philips 80C592, 83C592, 87C592

Philips 80C652, 83C652 10
Philips 86C410, 86C610 11
Philips 80C550, 83C550, 87C550 12
PHILIPS P83CL580 18
AMD 80C521, 80C321 1
DALLAS 80C320, 80C520 16
DALLAS 80C530 17
PHILIPS P83CL580 18
Siemens C501, C502 19
Siemens C503 20
Siemens C515C 21

Supported types for RTX-251 are:

Manufacturer / Model ‘ 'XX'
Intel 8xC251SB i
(tb.d.)

Thelist depicted above only provides a brief overview on the most impor tant
processor types supported. A detailed list of all processor types currently
supported by RT X-51/251 is contained at the top of the configuration header
file designated RTXSETUP.DCL.

Assembling the Configuration File:
RTX-51:
A51 RTXCONF. A51 DEBUG

RTX-251:

A251 RTXCONF. A51 DEBUG

The option DEBUG iis required, when the RTX debug macro shall be used under
dScope-51/251.

RTX-51/RTX-251 131

Chapter 6. CAN Support

Overview

This chapter forms the user’s manual for the RTXCAN/x51 Interface software. The
RTXCAN/x51 Interface allows a RTX-51/251 system to communicate with a CAN
Network.

This chapter is sub-divided into eight sub-chapters outlined bd ow:

"Introduction” provides a brief overview on RTXCAN/x51.

"Concept" describes the underlying software concept.

"Application Interface" contains a detailed listing of al RTXCAN/x51 system
functions.

"Configuration” describes the hardware requirements of RTXCAN/x51 and the system
configurable constants.

"Return Vaues' shows the return values of al system functions.
"Timing/ Initialisation" gives an overview on the bus timing calculations.
"Application Example' contains a short application example

"Files Ddivered” lists al files on the distribution disk.

Introduction

CAN (Controller Area Network) isa serial communication protocol designed for
automotive and industrial applications. CAN offers many important features such as:

m Multi master serial communication network with an unlimited number of
participating network nodes.

m Programmable transmission speed up to 1 Mbitg/s.

m Very low probability of undetected errors due to powerful error handling.

132 CAN Support

m At least 40 meters maximum distance between two bus nodes at 1 Mbits/s speed.
The distance increases with decreasing transmission spe=d.

m Guaranteed latency time supporting real-time applications.

= Non-destructive bit-wise arbitration.

m Broadcast messagetransfer.

m Datalength 0-8 bytes.

The RTXCAN/x51 softwareis used to implement afast task under RTX-51/251.
The CAN task serves as an interface between the user application tasksthe Intd
82526, 82527, the Siemens 81C90/91,C515C (often called Full CAN) or the Philips

PCA82C200 (called Basic CAN) CAN controller. The Philips 80C592 microcontroller
is also supported with integrated CAN contraller.

This user's guide assumes familiarity with the CAN specifications, with the CAN
controllers, and with the Real-Time Executive RTX-51/251.

Refer to the following publications for detailed information on the CAN specifications
and the CAN contrallers:

m 82526 Searial Communications Controller Architectural Overview, Intd,
Order Number: 270678-001

m 82526 Controller Area Network Chip, Intdl,
Order Number: 270573-003

= 82C200 Philips Stand-alone CAN Controller, Philips, Functional Description,
No. KIE 31/88 ME

= Application of the PCA82C200 CAN Controller, Philips,
Report No. PCALH KIE 02/90 ME

m INTEL 82527 Serial Communication Controller Architectural Overwiew,
February 1995 Order No: 272410-002

m Siemens SAE81C90/91 Data Sheet 06.95
m Siemens C515C User,s Manual 08.96

RTX-51/RTX-251 133

Concept

The RTXCAN/x51 software runs asfast task under RTX-51/251 and supports the
following functions:

= Recdving objects from the CAN network.

= Removing undesired messages.

= Notify to application task that a data frame was received with a signal or through
the mailbox 7.

= Sending data and remote frames as requested by the application.

Theinterface between the application tasks and the CAN communication task is built
by function calls smilar to the RTX-51/251 system calls. The CAN interface
enhances the RTX-51/251 system calls with functions common to the CAN
communication.

134 CAN Support

Application
Task 2

Application
Task 1

Application
Task3

MBX 7

|

CAN Communication Task
(Fast Task)

CAN Controller

Figure 15: Concept

RTX-51/RTX-251 135

Application Interface
The CAN communication interfaceis smilar to the RTX-51/251 interface

Using RTXCAN/x51 with the KEIL C51/C251 compiler is straightforward. The
header fileRTXCAN.H is provided to smplify application programming.

Each CAN function returns status information, which can be tested by the application
program.
For example

#i ncl ude <rtxcan. h>

/* Define object 1000 */
if (can_def_obj (1000, 2, D REC) != C OK) {
/* Return status indicates "not okay" */

}

136 CAN Support

Function Call Overview

Function Name Parameter Description ‘
can_task_create (void) Creates the CAN communication task.
Must be the first instruction to the
RTXCAN/x51 software.
can_hw_init unsigned char parameterl CAN controller hardware initialisation,
chip dependent register. defines the bus timing and the output driver
configuration.

unsigned char parameter2

chip dependent register. NOTE: depending on the CAN controller

used, the naming and the purpose of the
unsigned char parameter3 different parameters may vary (see function
chip dependent register. call description for details).

unsigned char parameter4
chip dependent register.

unsigned char parameter5
chip dependent register.

RTX-51/RTX-251

137

Function Name

can_def_obj

can_def_obj_ext

can_def_last_obj

can_def_last_obj_ext

can_send

can_write

can_receive

can_bind_obj

can_unbind_obj

can_bind_last_obj

can_unbind_last_obj

Parameter

unsigned int identifier
Communication object identifier
(0..2031).

unsigned char data_length
number of data bytes (0..8).

unsigned char object_type
type of object (D_REC, D_SEND,
D_REC_R_SEND,
D_SEND_R_REC).

unsigned long identifier
Communication object identifier
(0..65535).

unsigned char data_length
number of data bytes (0..8).

unsigned char object_type
type of object (D_REC, D_SEND,
D_REC_R_SEND,
D_SEND_R_REC).

unsigned long last_msg_mask
Last object mask

unsigned char data_length
number of data bytes (0..8).

unsigned long last_msg_mask

Last object mask (0..536870911).

unsigned char data_length
number of data bytes (0..8).

void xdata *msg_ptr
pointer to a structure of type
CAN_MESSAGE_STRUCT.

void xdata *msg_ptr
pointer to a structure of type
CAN_MESSAGE_STRUCT.

unsigned char timeout
time-out when no object received.

void xdata *buffer_ptr
pointer to a structure of type
CAN_MESSAGE_STRUCT.

unsigned int identifier
Communication object identifier
(0..2031).

unsigned int identifier
Communication object identifier
(0..2031).

(0..65535).

Description

Defines the communication objects. Use
this function to define objects according to
CAN standard 2.0A (11 bit identifier).

Defines the communication objects. Use
this function to define objects according to
CAN standard 2.0B (29 bit identifier).
NOTE: 29 bit identifiers (also called
ExtendedCAN) are not supported by all
CAN controllers.

Defines the 15. Sandard communication
object. Use this function to define objects
according to CAN standard 2.0B (11 bit
identifier).

Defines the 15. Extended Communication
object. Use this function to define objects
according to CAN standard 2.0B (29 bit
identifier).

Sends an object over the CAN bus.

Writes new data to an object without
sending it.

Receives all not bound objects.

Binds an object to a task. The task will be
started when the object is received.

Unties the binding between a task and an
object (made with CAN_BIND_OBJ).

Binds last object to a task. The task will be
started when the object is received.

Unties the binding between a task and an
last object (made with
CAN_BIND_LAST_OBJ).

138 CAN Support

Function Name Parameter Description ‘
can_read unsigned int identifier Reads an object data direct.

Communication object identifier

(0..2031).

void xdata *buffer_ptr
pointer to a structure of type
CAN_MESSAGE_STRUCT.

can_read_last_obj void xdata *buffer_ptr Reads last object data direct.
pointer to a structure of type
CAN_MESSAGE_STRUCT.

Function Call Description
The RTXCAN/x51 function calls are explained in detail in the following sections.
Each description contains the following:

Verbal explanation of the function call

Function prototype (as declared in RTXCAN.H)
Detailed explanation of each parameter

List of all return codes defined for this function
Notes on any special features of this function
Examplefor use

All function calls arethe same for the Philips 82C200, Philips 80C592, the Intel
82526, 82527 ,the Siemens 81C90/91,C515C CAN controllers. Differencesare
noted in the description of the corresponding function call.

The names of RTXCAN/x51 function calls begin with “ can_* to differentiate them
from standard RT X-51/251 system functions.

RTXCAN/x51 function calls may be used solely by RT X-51/251 tasks (calling
any CAN function from a C51/C251 interrupt function will lead to a system
malfunction).

RTX-51/RTX-251 139

can_task create

Createsthe CAN task. Must bethefirst function call before any other CAN functions
are used.

Prototype: unsigned char can_task_create (void);
Par ameter : none

Return Value: C OK:
CAN communication task is created.

C_NOT_STARTED
Errors while creating the CAN communication task.

Note: The CAN task uses thetask number 0. This number is not to
be used for application tasks. Under RTX-51 the CAN task
is assigned to register bank 3 (no special assignment is done
under RTX-251).

Example: #i ncl ude <rtxcan. h>
/* Create the CAN task */

if (can_task _create() !'= C K {
/* CAN task create failed */

}

140 CAN Support

can_hw_init

Basicinitialisation of the CAN controller hardware. Erases all defined communication
objects. After “can_hw_init”, all communication objects can be redefined for
RTXCAN/x51.

Prototype: unsigned char can_hw_init (unsigned char bus _timing_0,
unsigned char bus_timing_1,
unsigned char out_contral,
unsigned char syncon,
unsigned char sleep_mode);

intel 82527 only:

unsigned char can_hw_init (unsigned char bus timing_0,
unsigned char bus_timing_1,
unsigned char bus_config,
unsigned char cpu_interface,
unsigned char dummy);

Semens 81C90/91 only:

unsigned char can_hw_init (unsigned char bit_length_1,
unsigned char bit_length_2,
unsigned char out_contral,
unsigned char sleep_br_prsc,
unsigned char clock_control);

Semens C515C only:

unsigned char can_hw_init (unsigned char bit_timing_0,
unsigned char bit_timing_1,
unsigned char dummy,
unsigned char dummy,
unsigned char dummy);

Par ameter : Depending on the CAN controller type not all parameters
shown are significant (see declarations above for supported
parameters) !

RTX-51/RTX-251

141

bus timing_0: CAN controller bus timing O register (seethe
data sheet of the respective CAN controller).

bus timing_1: CAN controller bustiming 1 register.

out_control: CAN controller output control register (seethe
data sheet of the respective CAN controller)

syncon: CAN controller resynchronisation mode.

Resynchronisation can be performed on both edges of the bus
signal: recessive to dominant and dominant to recessive or on
the recessive to dominant edge only, depending on the syncon

byte.

syncon=1: Synchronisation on both edges (not recommended
at bit rates over 100 Kbits/s).

syncon=0: Synchronisation on the edge of a dominant level
only if the bus level monitored at the last sample point was a
recessive level.

sleep_mode: CAN controller SLEEP mode (see data sheet of
the CAN controller).

sleep_mode=1: SLEEP mode on
sleep_mode=0: SLEEP mode off

RTXCAN/x51 currently supports SLEEP mode only with the
Intel 82526 CAN controller and the Siemens 81C90/91 (see
parameter “sleep_br_presc*). This byteisinsignificant for
all remaining controllers.

bus_config: CAN controller bus configuration register (see
the data sheet for details).

cpu_interface: CAN controller bus configuration register
(seethe data sheet for details).

dummy: Not used parameter.

142 CAN Support

bit_length_1: CAN controller bit length 1 register (seethe
data sheet for details).

bit_length_2: CAN controller bit length 2 register (seethe
data sheet for details).

sleep_br_prsc: CAN controller (bit0..bit5) baud rate
prescaler register; (bit6) SME Sleep Mode Enable bit of
control register. (see the data sheet for details).

clock_control: CAN controller clock control register (sets
the output frequency at the pin CLK).

Bit_timing_0: CAN controller bit timing O register .

Bit_timing_1: CAN controller bit timing 1 register .

Return Value: C _OK:
Hardware initialisation finished

C_CONF_ERROR:
Impossible bus timing or not allowed parameter value

C CAN_FAILURE:
General errors with the CAN controller

Note: Bus timing calculation examples can be found in the chapter
» Timing / Initialisation” below.

The CAN controller clock divider register (for the CLKOUT
pin) can be written directly by the application.

Example 1: Philips 82C200 or 80592
#i ncl ude <rtxcan. h>

/[* Init the CAN communi cation controller for a */
/* baud rate of 50Kbauds/s (CAN controller with */
[* 16 MEz cl ock): */
[* Baud rate prescaler: 19 */
/* INSYNC: 1 */
/* TSER: 3 */

RTX-51/RTX-251 143

/* SIW=SJW: 4 */
/* SAMPLI NG 1 (three sanples / bit taken) */
/* SYNCH Mbde: 1 (transitions fromrecessive */

[* to dom nant and vice versa */
/* are used for resynchro- */
[* ni zat i on) */
/* */
[* tBTL = 2 * (19+1) / 16 Mz = 2. 518 */
/* 1 bit cycle = (1+4+3) * 2. 58 = 20 ns */
/* Baud rate = 16 MHz/(2*(19+1)*8) = 50 Kbits/s */
/* */
/* variation of bit time due to resynchronisation*/
/* MAX(baud rate) = 1/ (20nms-(4*2. 5n8)) */
[* = 100 Kbauds/s */
/* MAX(baud rate) = 1/ (20ns+(4*2. 5n8)) */
[* = 33. 3 Kbauds/s */
/* */
/* Set output control register to FFH */
/* */

can_hw_ i nit (0xd3, 0xa3, Oxff, 1, 0);

Example 2: intel 82527
#i ncl ude <rtxcan. h>

/* Init the CAN communi cati on controller for a */
/* baud rate of 1000Kbauds/s (CAN controller with */

/* 16 Mtz cl ock): */
[* */
/* SJW Resynchronisation junp width = 2 */
/* BRP Baud rate prescaler = 0 */
/* Spl Sampling node = 0 */
/* TSEGL = 2 */
/* TSEQ = 3 */
/* CoBy Conparator bypass = 1 */
/* Pol Polarity =0 */
/* DcTl Di sconnect TX1 output =1 */
/[* DcT2 Di sconnect Rx1 input = 1 */
/* DcRO Di sconnect RXO input = 0 */
/* RstSt Hardware reset status = 0 */
/* DSC Divide systemclock =1 */
/* DMC Divide nenmory clock = 0 */
/* PwD Power down node enabled = 0 */
/* Sleep Sleep node enable = 0 */
/* MUX Multiplex for 1SO | ow speed physi cal */
/* layer = 0 */
/* Cen Cl ockout enable =1 */
[* */
/* Baud rate = XTAL/[(DSC+1)*(BRP+1) * (3+TSEGL */
[* + TSER)] */
/* Baud rate = 16000/[(1+1)*(0+1)*(3+3+5)] */
[* = 1000KHz */

can_hw_init (0x80, 0x23, Ox5E, 0x41, dumy) ;

144 CAN Support

Example 3: Siemens 81C90/91
#i ncl ude <rtxcan. h>

/* Init the CAN communi cati on controller for a */
/* baud rate of 1000Kbauds/s (CAN controller with */

/* 16 Mtz cl ock): */
/* */
/* Bit Length Register 1: */
/[* SAM TS2.2 TS2.1 TS2.0 TS1.3 TS1.2 TS1.1 TS1.0*/
/[* 0 O 1 0 0 0 1 1 */
/* */
/* TSEGL =(TS1 +1)*fscl */
/* TSEG =(TS2 +1)*fscl */
/* */
/* Bit Length Register 2: */
/* IPOL DI ---- ---- ---- SIM SIJW1 SIW2 */
/* 0 1 0 0 0 O 1 0 */
/* */
[* SJWdth = (SIW+ 1)*fscl */
[* SIM=1 */
/* */

/* sleep_and_br prescale: sets bits BRPX(Bit 0 */
/* .. Bit 5) of Baud rate and SME (Bit 6) of */

/* Control reg. */
[* */
/* Baud rate prescal er register: */
[* —eee —--- BRP5 BRP4 BRP3 BRP2 BRP1 BRPO */
[* 0 0 0 0 0 0 0 0 */
/* Control register: */
[* =--- SME ---- ---- ---- ---- oo oo-- &l
[* */
[* fscl = (BRP+1)*2*fosc (fosc=1/fcrystal) */
[* fscl = (BRP+1)*(2/fcrystal) */
[* */
/* Bit |ength: */
/* fbl = TSEGL + TSEQR + 1 fscl */
/* Baud rate: */
/* BR = fcrystal / (2*(BRP+1)*(TS1+TS2+3)) o]
[* */
/* Qut Control Register: */
/* OCTP1 OCTN1 OCP1 OCTPO OCTNO OCPO OCML OCMD */
/* 1 1 1 1 1 0 0 0 */

can_hw_init(0x23, 0x42, O0xF8, 0x00, 0x04);

Example 4: Siemens C515C
#i ncl ude <rtxcan. h>

/* Init the CAN communi cati on controller for a */
/* baud rate of 1000Kbauds/s (CAN controller with */

/* 10 Mtz cl ock): */
/* */
/* Bit Tim ng Register O: */

/* SW BRP */

RTX-51/RTX-251 145

/* 1 0 0 0 00 0O O */
/* */
/* TSEGL =(TS1 +1)*fscl */
/* TSEG =(TS2 +1)*fscl */
/* */
/* Bit Timng Register 1: */
/* 0 TS2 TS1 */
/* 0 0 1 1 0 1 0 O */
/* */
[* SIWdth = (SIW+ 1)*fscl */
/* */
/* fscl = (BRP+1)*fosc (fosc=1/fcrystal) */
[* fscl = (BRP+1)/ fcrystal */
/* */
/[* Bit |ength: */
/* fbl = TSEGL + TSEQ + 1 fscl */
/* Baud rate: */
/* BR = fcrystal / ((BRP+1)*(TS1+TS2+3)) */
/* BR = 10000 / ((0 +1)*(4 +3 +3)) */
/* */

can_hw_init(0x80, 0x34, 0x00, 0x00, 0xO00);

146

CAN Support

can_def _obj

Defines a new communication object. This function can only be executed after
“can_hw_init" or “can_stop”.

Objects can be defined until the object memory is full or the maximum number of 255
objectsis reached (with the Intd 82526, 82527, the SiemensC90/91,C515C contraller,
the object memory sizeis limited by the CAN contraller internal RAM. With the
Philips 82C200 / 80C592 controllers, the object memory sizeis user configurable and
is alocated in the XDATA space of the microcontroller).

Each object identifier must be unique. The function returns an error statusif attempt is
made to define an object twice

The communication can be started after the completion of the object definition using
“can dart”.

Prototype: unsigned char can_def_obj (unsigned int identifier,
unsigned char data length,
unsigned char object_type);

Parameter: identifier isthe communication object identifier
corresponding to the CAN definition

(0..2047 for intel 82527 and Siemens 81C90/91,
0 .. 2031 for the others)

data_length is the number of data bytes (O .. 8)

object_typeisthe object definition:

D_REC(0): Data frame reception only
D_SEND(1): Data frame transmission only
D_REC R _SEND(2): Data frame reception and
remote frame transmission
D_SEND_R_REC(3): Data frame transmission and

remote frame reception with
automatic answer to the remote
frame

With the Intel 82526 CAN controller, objects defined as
D_SEND can also respond to remote frames. The object
definitions D_SEND and D_SEND_R_REC areidentical to
the Intel 82526 CAN controller.

RTX-51/RTX-251

147

Return Value

Example:

C OK:
Object definition successful.

C _NOT_STOPPED:
“can_hw_init” or “can_stop” must be called prior to
“can_def_obj”.

C_OBJ ERROR:
Attempt was made to define an pre-existing object.

C_TOO_LONG:
“data_length” cannot be greater than 8 bytes.

C_INVALID_TYPE;
Invalid “ object_type’.

C MEM_FULL:
The object memory is full or 255 objects have already been
defined. All objects can be erased with “can_hw_init”.

#i ncl ude <rtxcan. h>

/* Define a send only object with the identifier */
/* 1200 and with 6 data bytes */
can_def _obj (1200, 6, D SEND);

148

CAN Support

can_def obj_ext

Defines a new extended communication object (for intd 82527, the
SiemensC90/91,C515C only). Thisfunction can only be executed after “can_hw_init”
or “can_stop”.

Objects can be defined until the object memory is full or the maximum number of
14 objectsis reached .

Each object identifier must be unique. The function returns an error statusif attempt is
made to define an object twice

The communication can be started after the completion of the object definition using
“can dart”.

Prototype: unsigned char can_def_obj (unsigned long identifier,
unsigned char data length,
unsigned char object_type);

Parameter: identifier isthe communication object identifier
corresponding to the CAN definition (0..65535)

data_length is the number of data bytes (O .. 8)

object_typeisthe object definition:

D_REC(0): Data frame reception only
D_SEND(1): Data frame transmission only
D_REC R _SEND(2): Data frame reception and
remote frame transmission
D_SEND_R_REC(3): Data frame transmission and

remote frame reception with
automatic answer to the remote
frame

Return Value: C _OK:
Object definition successful.

C _NOT_STOPPED:
“can_hw_init” or “can_stop” must be called prior to
“can_def_obj_ext”.

RTX-51/RTX-251

149

Example:

C_OBJ ERROR:
Attempt was made to define an pre-existing object.

C_TOO_LONG:
“data_length” cannot be greater than 8 bytes.

C_INVALID_TYPE;
Invalid “ object_type’.

C_MEM_FULL:
The object memory is full or 14 objects have already been
defined. All objects can be erased with “can_hw_init”.

#i ncl ude <rtxcan. h>

/* Define a send only object with the identifier */
/* 10000 and with 6 data bytes */
can_def _obj _ext (10000, 6, D SEND);

150 CAN Support

can_def_last_obj

Defines thelast standard communication object. (for intel 82527, the Siemens C515C
only). Thisfunction can only be executed after “can_hw_init” or “can_stop”.

The communication can be started after the completion of the object definition using

“can dart”.
Prototype: unsigned char can_def_obj (unsigned long last_msg_mask,
unsigned char data_length);
Par ameter : last_obj_mask is thelast standard communication object
mask corresponding to the CAN definition
(0..2047)

data_length is the number of data bytes (O .. 8)

Return Value: C _OK:
Object definition successful.

C _NOT_STOPPED:
“can_hw_init” or “can_stop” must be called prior to
“can_def_last_obj”.

C_OBJ ERROR:
Attempt was made to define an pre-existing object.

C_TOO_LONG:
“data_length” cannot be greater than 8 bytes.

Example: #i ncl ude <rtxcan. h>

/* Define the standart |ast object with mask */
/* 1200 and with 6 data bytes */
can_def _| ast_obj (1200, 6);

RTX-51/RTX-251 151

can_def last_obj ext

Defines thelast extended communication object. (for inte 82527, the Siemens C515C
only). Thisfunction can only be executed after “can_hw_init” or “can_stop”.

The communication can be started after the completion of the object definition using

“can dart”.

Prototype: unsigned char can_def_obj (unsigned long last_msg_mask,
unsigned char data_length);

Par ameter : last_msg_mask is the last extended communication object

mask corresponding to the CAN definition
(0..536870911)

data_length is the number of data bytes (O .. 8)

Return Value: C OK:
Object definition successful.

C _NOT_STOPPED:
“can_hw_init” or “can_stop” must be called prior to
“can_def_lat_obj_ext”.

C_OBJ ERROR:
Attempt was made to define an pre-existing object.

C_TOO_LONG:
“data_length” cannot be greater than 8 bytes.

Example: #i ncl ude <rtxcan. h>
/* Define the extended | ast object with mask */
/* 100000 and with 6 data bytes */

can_def _| ast _obj _ext (100000, 6);

152

CAN Support

can_stop

Stopsthe CAN communication. New objects can now be defined with “can_def_obyj”.
“ Can_gtop” does not erase the pre-defined communication objects (in contrast to

“can_hw_init").

“ Can_dtart” can be used to restart the CAN communication.

Prototype:
Par ameter :

Return Value

Example:

unsigned char can_stop (void);
none

C OK:
CAN communication stopped.

C_CAN_FAILURE:
Errors while stopping the communication.

#i ncl ude <rtxcan. h>

/* Stop the CAN communi cation */
can_stop ();

/* Define object 200 */

can_def _obj (200, 8, D REQ);

/* Restart the CAN communi cation */
can_start ();

RTX-51/RTX-251 153

can_start

Restarts the CAN communication after “can_stop” or “can_def_obj” (“ can_def_obj”
can only be executed after “can_stop” or “can_hw_init”).

After areturn status value of C_BUS OFF, the CAN communication can be restarted
with “can_start” (no initialisation required).

Prototype: unsigned char can_start (void);
Par ameter : none

Return Value: C OK:
CAN communication started.

C_CAN_FAILURE:
Errors while starting the communication.

Example: #i ncl ude <rtxcan. h>

/* Stop the CAN communi cation */
can_stop ();

/* Restart the CAN communi cation */
can_start ();

154 CAN Support

can_send

Sends an object which is pre-defined with “can_def_obj” with new data viathe CAN

bus.
Prototype: unsigned char can_send (void xdata *msg_ptr);
Par ameter : msg_ptr isthe pointer to a structure of the type

CAN_MESSAGE_STRUCT inthe XDATA memory.

The structure CAN_MESSAGE_STRUCT (defined in
RTXCAN.H) is organised as depicted below:

ident 2 bytes

c_data 8 bytes

(for intd 82527, the Siemens C515C only):

ident 4 bytes

c_data 8 bytes

“ident” is the communication object identifier as defined in
“can_def_obj”.

“c_data’: Data bytes.
The data length is defined as eight bytes (maximum data

length for the communication object) for simplification
reasons .

RTX-51/RTX-251 155

User structures may be defined with a data length smaller
than eight bytes (the first two or four bytes must, however,
always represent the IDENTIFIER fidd!). The
communication software always sends or receives the data
length as defined with “can_def_obj,can_def_obj_ext”.

Return Value: C OK:
Object sent.

C_OBJ ERROR:

Object undefined or object has the wrong type (the parameter
“object_type’ in thefunction call “can_def_obj” does not
havethevalueD_SEND or D_SEND_R_REC).

C_SEND_ERROR:
Object not sent, bus access errors (this error is an indication
that no other node exists on the bus).

C_BUS OFF:

The CAN controller isin the off bus state becauseit has
detected too many errors on the CAN bus (restart with
“can_start”).

C CAN_FAILURE:
Unrecoverable CAN error

Example: #i ncl ude <rtxcan. h>

struct xdata can_nessage_struct send_nes;
unsi gned char xdata i;

/* Send the defined object 1200 over the CAN bus */
/[* Init the send structure */

send_nes.identifier = 1200;

for (i=0; i<=7; i++) send_nes.c_data[i] = 1i;

can_send (&send_nes);

156

CAN Support

can_write

Writes new data to a pre-defined object. “ Can_write’ does not send an object over the
CAN bus (as“can_send” does). It only updates the data fidd in the object buffer.
When this object recaves aremote frame, the new data is sent viathe CAN bus.
Prototype: unsigned char can_write (void xdata *msg_ptr);

Par ameter : msg_ptr isthe pointer to a structure of the type
CAN_MESSAGE_STRUCT inthe XDATA memory

The structure CAN_MESSAGE_STRUCT (defined in
RTXCAN.H) is organised as depicted below:

ident 2 bytes

c_data 8 bytes

(for intd 82527, the Siemens C515C only):

ident 4 bytes

c_data 8 bytes

“ident” is the communication object identifier as defined in
“can_def_obj,can_def_obj_ext”.

“c_data’: Data bytes.

The data length is defined as eight bytes (maximum data
length for the communication object) for simplification

RTX-51/RTX-251

157

Return Value

Example:

reasons .

User structures may be defined with a data length smaller
than eight bytes (the first two bytes must, however, always
represent the IDENTIFIER fidd!). The communication
software always sends or receives the data length as defined
with “can_def_obj,can_def_obj_ext”.

C OK:
Object data updated.

C_OBJ ERROR:

Object undefined or object has the wrong type (the parameter
“object_type’ in thefunction call “can_def_obj” does not
havethevalueD_SEND or D_SEND_R_REC).

C CAN_FAILURE:
Unrecoverable CAN error

#i ncl ude <rtxcan. h>

struct xdata can_nessage_struct send_nes;
unsi gned char xdata i;

/* Wite new data to the defined object 1200 */
/[* Init the structure */

wite_mes.identifier = 1200;

for (i=0; i<=7; i++) wite_nes.c_datal[i] =1i;

can_wite (&wite_nes);

158 CAN Support

can_receive

Receaives all objectsthat are not bound (see”can_bind_obj,can bind last_obj”) viathe
RTX 517251 mailbox 7. Thewaiting objects are handled in a FIFO (Firgt-In, Fird-
Out) manner; i.e thefirst recaived object (top of the queue) will be removed first.
When the FIFO buffer isfull (eight objects receved) and the application does not read
from the buffer with “ can_receive’, then all further objects arelost.

Prototype: unsigned char can_receive (unsigned char timeout,
void xdata * buffer_ptr);

Par ameter : timeout is the time-out when no object isreceived. Same
definition asin RTX-51/RTX-251:

0:
No time-out, do not wait for receiving if an object is not
already in the FIFO buffer.

1..254:
Number of RTX-51/251 system ticks until time-out when no
object received.

255:
Wait until an object is received (infinite waiting).

buffer_ptr isthe pointer to a structure of the type
CAN_MESSAGE_STRUCT in the XDATA memory. The
received object will be copied to this structure.

The structure CAN_MESSAGE_STRUCT (defined in
RTXCAN.H) is organised as depicted below:

ident 2 bytes

c_data 8 bytes

RTX-51/RTX-251 159

(for intd 82527, the Siemens C515C only):

ident 4 bytes

c_data 8 bytes

“ident” is the communication object identifier as defined in
“can_def_obj,can_def_obj_ext,
can_def_last_obj,can _def last obj_ext”.

“c_data’: Data bytes.

The data length is defined as eight bytes (maximum data
length for the communication object) for simplification
reasons .

User structures may be defined with a data length smaller
than eight bytes (the first two bytes must, however, always
represent the IDENTIFIER fidd!). The communication
software always sends or receives the data length as defined
with “can_def_obj”.

Return Value: C OK:
Object received.

C_TIMEOUT:
Time-out reached, no object received.

C_BUS OFF:

The CAN controller isin the off bus state becauseit has
detected too many errors on the CAN bus (restart with
“can_start”).

C CAN_FAILURE:
Unrecoverable CAN error.

160

CAN Support

Note:

See Also:

The application always receives the newest object data.
When an object receives new data before the application has
read the old data, the latter will be overwritten by the new
data.

A new notification will not be sent to the application unless it
has responded to the last natification (it has read the objects
data).

can_bind_obj, can_unbind_obj,
can_bind _last_obj, can_unbind_last_obj,
can_wait for other methods to receive objects.

RTX-51/RTX-251 161

Example: #i ncl ude <rtxcan. h>
struct xdata can_message_struct rec_nes;

/* Receive objects with no timeout */

for (;;) { /* Endless |oop */
can_receive (Oxff, & ec_mes)
/* 1f object 220 received, do routine */
if (rec_mes.identifier == 220) {

/* if object 300 received, do other routine */
else if (rec_mes.identifier == 300) {

}

162 CAN Support

can_bind_obj

Binds an object to a certain application task. Thistask will be started if the CAN
software receives the determined object and if the application task is waiting with
“can_wait".

“can_bind_obj” and “can_wait” can be used to implement specialised application tasks
which handle the recaiving of important objects. In comparison to “can_receive’, no
FIFO buffering is made.

An application task can be bound to more than one object (multiple call of
“can_bind_obj”). An object cannot be bound to more than one task.

A task that uses*“can_bind_obj” and “can_wait” is comparableto atask that servicesa
hardware interrupt (the receiving of the bound object is theinterrupt).

A maximum of eight objects may be bound to application tasks.
Prototype: unsigned char can_bind_obj (unsigned int identifier);

Parameter: identifier is the identification (as defined in CAN_DEF_OBJ)
of the object that must be bound to the calling task. The
binding will always be made with the task which calls
“can_bind_obj”.

Return Value: C _OK:
Binding successful.

C_OBJ ERROR:

Object undefined or object has the wrong type (the parameter
“object_type’ in the function call “can_def_obj” does not
havethevalueD_REC or D_REC_R_SEND) .

C_MEM_FULL:
8 “ can_hind _obj” have already been made (“can_unbind_obj”
can be used to until an object from a task).

C_OBJ REBIND:

This message is only a warning: the object was already bound
toatask. Theprior binding was untied and the new binding
is made.

RTX-51/RTX-251 163

Note: All normal RTX-51/251 priority rules apply. To ensure that
the application task will be started immediately after receiving
the bound object, the application task must have a high
priority (higher than the task priority which calls
CAN_RECEIVE).

Objects can be bound to a RTX-51/251 fast task if a fast
responsetimeis required.

No more than 8 objects can be bound to application tasks.
See Also: “can_unbind_obj”, “ can_bind”.

Example: --> see ,can_wait"“

164 CAN Support

can_unbind_obj

Unties a binding previoudy made between an application task and an object. The
untied object can now be received with “can_receive’.

Prototype: unsigned char can_unbind_obj (unsigned int identifier);

Parameter: identifier istheidentification (as defined in “can_def_obj”) of
the object that must be untied from the calling task.

Return Value: C OK:
Object untied.

C_OBJ ERROR:
Object undefined or never bound to the calling task.

See Also: can_bind_obj, can_bind

Example: --> see “can_wait”

RTX-51/RTX-251 165

can_bind_last_obj

Binds the last object to a certain application task. Thistask will be started if the CAN
software receives the determined object and if the application task is waiting with
“can_wait".

“can_bind_last_obj” and “can_wait” can be used to implement specialised application
tasks which handle the receiving of important objects. In comparisonto “can_receive’,
no FIFO buffering is made.

Thelast object cannot be bound to more than onetask.

A task that uses“can _bind last_obj” and “can_wait” is comparableto atask that
sarvices a hardwareinterrupt (the recaiving of the bound object is theinterrupt).

A maximum of eight objects may be bound to application tasks.
Prototype: unsigned char can_bind_obj (void);

Return Value: C _OK:
Binding successful.

C_MEM_FULL:
8 “ can_hind_obj” have already been made (“can_unbind_obj”
can be used to until an object from a task).

C_OBJ REBIND:

This message is only awarning: the object was already bound
toatask. Theprior binding was untied and the new binding
is made.

Note: All normal RTX-51/251 priority rules apply. To ensure that
the application task will be started immediately after receiving
the bound object, the application task must have a high
priority (higher than the task priority which calls
CAN_RECEIVE).

Objects can be bound to a RTX-51/251 fast task if a fast
responsetimeis required.

No more than 8 objects can be bound to application tasks.

o CAN Support

See Also: “can_unbind_last_obj”.

Example: > see ,can_wait*

RTX-51/RTX-251 167

can_unbind_last_obj

Unties a binding previoudy made between an application task and an object. The
untied object can now be received with “can_receive'.

Prototype: unsigned char can_unbind_last_obj (void);
Return Value: C OK:
Object untied.

C_OBJ ERROR:
Object undefined or never bound to the calling task.

See Also: can_bind_obj

Example: --> see “can_wait”

168 CAN Support

can_wait

“can_wait” isrdated to “can_bind _obj, can_bind last_obj”. If an application task
calls“can_wait” and an object is recaved which is bound with
“can_bind_obj,can bind last_obj” tothistask, then the task will be started.

Prototype: unsigned char can_wait (unsigned char timeout,
void xdata * buffer_ptr);

Par ameter : timeout is the time-out when no object isreceived. Same
definition asin RTX-51/251:

0:
No time-out, do not wait for receiving object.

1..254:
Number of RTX-51/251 system ticks until time-out when no
object received.

255:
Wait until an object is received (infinite waiting).

buffer_ptr isthe pointer to a structure of the type
CAN_MESSAGE_STRUCT in the XDATA memory. The
received object will be copied to this structure.

The structure CAN_MESSAGE_STRUCT (defined in
RTXCAN.H) is organised as depicted below:

ident 2 bytes

c_data 8 bytes

RTX-51/RTX-251 169

(for intd 82527, the Siemens C515C only):

ident 4 bytes

c_data 8 bytes

“ident” is the communication object identifier as defined in
“can_def_obj,can_def_obj_ext,
can_def_last_obj,can _def last obj_ext”.

“c_data’: Data bytes.

The data length is defined as eight bytes (maximum data
length for the communication object) for simplification
reasons .

User structures may be defined with a data length smaller
than eight bytes (the first two bytes must, however, always
represent the IDENTIFIER fidd!). The communication
software always sends or receives the data length as defined
with “can_def_obj,can_def_obj_ext,

can_def_last_obj,can _def last obj_ext”.

Return Value: C OK:
Object received.

C_TIMEOUT:
Time-out reached, no object received.

C CAN_FAILURE:
Unrecoverable CAN error.

Note: The application always receives the newest object data.
When an object receives new data before the application has
read the old data, the latter will be overwritten by the new

170 CAN Support

data

A new natification will not be sent to the application unless it
has responded to the last notification (it has read the objects

data).
See Also: can_bind_obj, can_unbind_obj
Example 1: Wait for an object

#i ncl ude <rtxcan. h>

struct xdata can_message_struct rec_nes;

/* Bind object with identifier 220 to this task */
can_bi nd_obj (220);

for (;;) { /* Endless |oop */
/* Task waits until object 220 received */
/* 1f ok then handl e obj ect 220 */
if (can_wait (Oxff, &ec_nes) == C K) {
/* |If data byte 1 of the object 220 is */

/* equal to 3 then */
if (rec_nes.c_data[0] == 3) {
; ..
}
}
Example 2: Wait for two objects

#i ncl ude <rtxcan. h>

struct xdata can_message_struct rec_nes;

/* Bind objects with identifier 220 and 230 */
[* to this task */

can_bi nd_obj (220);

can_bi nd_obj (230);

for (;;) { /* Endless loop */
/* Task waits until object 220 or 230 received */

RTX-51/RTX-251 171

can_wait (Oxff, &rec_nes);

/* Determne the received object */

if (rec_mes.identifier == 220) {
/* |f data byte 1 of the object 220 is */
/* equal to 3 then */
if (rec_mes.c_data[0] == 3) {

}
else if (rec_mes.identifier == 230) {
} ..
}
}
Example 3: Unbind a bound object

#i ncl ude <rtxcan. h>

/* Bind object with identifier 220 to this task */
can_bi nd_obj (220);
counter = 0;

for (;;) { /* Endless |oop */

/* Task waits until object 220 received */

can_wait (Oxff, &rec_nes);

/* increment counter */

counter ++;

i f (counter >= 20000) {
/* |f object 220 is greater than or equal */
/* to 20000 tinmes received: Untie the object*/
/* fromthe task and terminate the task */
can_unbi nd_obj (220);
os_del ete_task (REC TASK);

172 CAN Support

can_request

Sends aremote framefor a defined object viathe CAN bus. The corresponding data
frame will be sent to the application in the usual way (“can_wait” or “can_receaive’).

Prototype: unsigned char can_request (unsigned int identifier);
Parameter: identifier istheidentification (as defined in “can_def_obj”) of
the requested object
Return Value: C OK:
Remote frame sent
C_OBJ ERROR:

Object undefined or object has the wrong type (the parameter
“object_type’ in the function call “can_def_obj” does not
havethevalueD_REC _R_SEND).

C_SEND_ERROR:
Remote frame not sent, bus access errors (this error isan
indication that no other node is on the bus).

C_BUS OFF:

The CAN controller isin the off bus state becauseit has
detected too many errors on the CAN bus (restart with
“can_start”).

C CAN_FAILURE:
Unrecoverable CAN error.

Example: #i ncl ude <rtxcan. h>

struct xdata can_nessage_struct rec_nes;

/* Define an object with identifier 1200 and */
/* with 6 data bytes. */

/* The object can receive data and send */

/* renmote franes. */

can_def _obj (1200, 6, D REC R SEND);

RTX-51/RTX-251

173

/* Bind object with identifier 1200 to this task */
can_bi nd_obj (1200);

for (;;) { /* loop forever */
/* Request object 1200 (send a renote frane */
/* for this object) */
can_request (1200);

/* Task waits until object 1200 received */
can_wait (Oxff, &rec_nes);

/* Handl e object 1200 */

174 CAN Support

can_read

Allows data to be read from every object independent of the defined object type
“can_read’ cannot subgtitute the function “ can_receive’. “ Can read’ is, however,
useful for debugging purposes.

Prototype: unsigned char can_read (unsigned int identifier,
void xdata * buffer_ptr);

Parameter: identifier istheidentification (as defined in
“can_def_obj,can_def_obj_ext,”) of the requested object

buffer_ptr isthe pointer to a structure of the type
CAN_MESSAGE_STRUCT in the XDATA memory. The
received object will be copied to this structure.

The structure CAN_MESSAGE_STRUCT (defined in
RTXCAN.H) is organised as depicted below:

ident 2 bytes

c_data 8 bytes

(for intd 82527, the Siemens C515C only):

ident 4 bytes

c_data 8 bytes

RTX-51/RTX-251

175

Return Value

Example:

“ident” is the communication object identifier as defined in
“can_def_obj,can_def_obj_ext”.

“c_data’: Data bytes.

The data length is defined as eight bytes (maximum data
length for the communication object) for simplification
reasons .

User structures may be defined with a data length smaller
than eight bytes (the first two bytes must, however, always
represent the IDENTIFIER fidd!). The communication
software always sends or receives the data length as defined
with “can_def_obj,can_def_obj_ext,

can_def_last_obj,can _def last obj_ext”.

C OK:
Object received.

C_OBJ ERROR:
Object undefined.

#i ncl ude <rtxcan. h>
struct xdata can_message_struct read_nes;

/* Read object 200 */
can_read (200, &read_nes);

176 CAN Support

can_read last_obj

Allows data to beread from last object . “can read last_obj” cannot substitute the
function“can_receive’. “ can read last_ohj” is, however, useful for debugging

pUr POSES.
Prototype: unsigned char can_read (void xdata *buffer_ptr);
Par ameter : buffer_ptr isthe pointer to a structure of the type

CAN_MESSAGE_STRUCT inthe XDATA memory. The
received object will be copied to this structure.

The structure CAN_MESSAGE_STRUCT (defined in
RTXCAN.H) is organised as depicted below:

ident 4 bytes

c_data 8 bytes

“ident” is the communication object identifier as defined in
“can_def_last_obj,can _def last_obj_ext”.

“c_data’: Data bytes.

The data length is defined as eight bytes (maximum data
length for the communication object) for simplification
reasons .

User structures may be defined with a data length smaller
than eight bytes (the first two bytes must, however, always
represent the IDENTIFIER fidd!). The communication
software always receives the data length as defined with
“can_def_last_obj,can _def last_obj_ext”.

Return Value: C OK:
Object received.

RTX-51/RTX-251 177

C _OBJ ERROR:
Object undefined.

Example: #i ncl ude <rtxcan. h>
struct xdata can_message_struct read_nes;

/* Read | ast object */
can_read_| ast_obj (& ead_mes);

178 CAN Support

can_get_status

Gestheactual CAN controller status. This function is useful for debugging purposes.
Prototype: unsigned char can_get_status (void);

Par ameter: none

Return Value Gets the actual CAN controller status as defined in the CAN
protocol:

C ERR _ACTIVE:

Thisis the normal mode of operation. An "error active' node
is ableto receive and/or transmit in the usual manner, and can
send a "dominant” error flag.

C_ERR_PASSIVE:

The controller has detected that the CAN bus is presently
severdy disturbed. An"error passive' node may send and
receive messages in the usual manner. It is not ableto signal
this by transmitting a "dominant” but only "recessive’ error
flag in the case of a detected error condition. Thus, an "error
passive' node may not block all bus activities dueto afailure
inits transmit logic.

C_BUS OFF:

The CAN controller isin the off bus state becauseit has
detected too many errors on the CAN bus (restart with
“can_start”)

Example: #i ncl ude <rtxcan. h>

/[* Get the CAN controller status */

if (can_get_status () == C BUS_OFF) {
/* Too many errors on the bus detected, restart*/
/* the communi cation */
can_start ();

RTX-51/RTX-251 179

Configuration

Hardware Requirements
RTXCAN/x51 software reguires the following hardware configuration:

m RTX-51/251 compatible 8051/MCS 251 system (any of the MCS-51/251-basad
microcontrollers supported by RTX-51/251).

= Intd 82526, 82527 or Philips 82C200 or Siemens 81C90/91CAN controller
addressable as memory mapped 1/0O device anywherein the XDATA space of the
microcontroller (XDATA addressis user configurable).
Also: Philips 80C592 (83C592, 87C592) ,Siemens C515C microcontroller with
integrated CAN contraller.

m The CAN controller interrupt must be connected to an external interrupt pin of the
microcontraller (the used interrupt is user configurable).

Note: Thelntd 82526, 82527, the Philips 82C200and the Siemens 81C90/91 CAN
controller generate an active low interrupt signal. An external interrupt must be used
which can handle active low interrupt signals (either leve or negative transition
activated).

(The externd interrupts 4, 5 and 6 of the 80515/535 microcontroller can only handle
signals with a pogitive trangition).

The Intd 82527 generates an interrupt:
onpinllif MUX =1,andDcR1=1
onpin 24 if MUX =0

Configuration Files

A separate configuration file exists for each supported CAN controller:
- Philips 82C200 (Basic CAN) - BCANCONF.A51
- Philips 80C592 (Basic CAN) - CCONF592.A51

- Intel 82526 (Full CAN) - FCANCONF.A51

180

CAN Support

- Inte 82527 (Full CAN) - GCANCONF.A51

- Siemens 81C90/91 (Full CAN) > HCANCONF.A51
- Siemens C515C (Full CAN) > ICANCONF.A51
The configuration file must be assembled with A51/A251.
The following adaptations can be made in the configuration files:

CONTROLLER _BASE (for 82526 and 80C200, same definition for the Intdl,
Philips and Siemens CAN controller):

Defines the start address of the CAN controller inthe
microcontroller XDATA space. An arbitrary value
between 0 and FFFFH may be used.

USED_CAN_INT_NBR (for 82526 and 80C200, same definition for Intd, Philips
and Siemens CAN controller):

Ddfinestheinterrupt sourcefor the CAN controller. The
congtant has the same definition asin RTX-51/251 (see
RTX-51/251 function call "os_attach _interrupt™).

OBJ_BUFFER_LENGTH (only for the Philips CAN controllers):

Defines the number of bytes for the object buffer. The
object buffer will be allocated in the XDATA space of
the microcontroller.

Thefirst object occupies 28 bytes, each further object
occupies 14 bytes from the buffer.

With an object buffer length of 28 bytes, 1 object can be
defined. With alength of 42 bytes, 2 objects can be
defined. With alength of 56 bytes, 3 objects can be
defined.

RTX-51/RTX-251 181

Memory/System Requirements
System utilising the I ntd 82526, 82527 and 81C90/91 CAN controller:

4.6 Kbytes code

256 bytes XDATA spacefor the CAN controller hardware

One-bit internal RAM for RTXCAN/x51 system variables

220 byte XDATA RAM for system variables

RTX-51/251 mailbox number 7 and a fast task (Number 3 for RTX-51) with the
task number 0 are employed by the CAN communication software.

System utilising the Philips 82C200/80C592 CAN controller:

4.2 Kbytes code

32 bytes XDATA spacefor the CAN controller hardware (only 82C200)

One-bit internal RAM for RTXCAN/x51 system variables

89 byte XDATA RAM for system variables

Number of bytes defined with OBJ BUFFER_LENGTH inthe XDATA RAM
RTX-51/251 mailbox number 7 and a fast task (Number 3 for RTX-51) withthe
task number 0 are employed by the CAN communication software.

Adapting Stack Sizes

Sat the stack sizefor the fast tasks to 18 bytes minimum in the RTX-51 configuration
file(RTX_INTSTKSIZE in RTXSETUP.DCL). Se thestack sizeto at least 30
bytesin the RTX-251 configuration file (?RTX_STKSIZE in RTXSETUP.DCL).

Linking RTXCAN/x51

Except for GCANCONF.A51, FCANCONF.A51, HCANCONF.A5L,
BCANCONF.A51 and CCONF592.A51, all modules of RTXCAN/x51 are contained
in thelibraries RTXGCAN.LIB (intel 82527), RTXICAN.LIB(Siemens
C515C),RTXFCAN.LIB (intel 82526), RTXHCAN.LIB (Siemens 81C90/91),
RTXBCAN.LIB (Philips 80C200) and CANPS92.LIB (Philips 80C592).

182 CAN Support

A systemfor thel ntel 82526 CAN controller isbuilt in the following way:
- Assembling of FCANCONF.A51
- Linking the application with FCANCONF.OBJ and RTXFCAN.LIB

- Special locate controls are not required for the RTXCAN/x51 software,

A systemfor thelntel 82527 CAN controller is built in the following way:
- Assembling of GCANCONF.A51
- Linking the application with GCANCONF.OBJ and RTXGCAN.LIB

- Special locate controls are not required for the RTXCAN/x51 software,

A system for the Siemens 81C90/91 CAN controller is built in the following way:
- Assembling of HCANCONF.A51
- Linking the application with HCANCONF.OBJand RTXHCAN.LIB

- Special locate controls are not required for the RTXCAN/x51 software,

A system for the Siemens C515C CAN controller is built in the following way:

- Assambling of ICANCONF.A51
- Linking the application with ICANCONF.OBJ and RTXICAN.LIB

- Special locate controls are not required for the RTXCAN/x51 software,

A system for the Philips 82C200 CAN controller is built in thefollowing way:
- Assambling of BCANCONF.A51

- Linking the application with BCANCONF.OBJ and RTXBCAN.LIB

RTX-51/RTX-251 183

- Spexid locate controls are not required for the RTXCAN/x51 software.

A system for the Philips 80C592 is built in the following way:

- Assembling of CCONF592.A51
- Linking the application with CCONF592.0BJ and CANPS592.L1B

- Spexid locate controls are not required for the RTXCAN/x51 software.

Return Values
Contained in the INCLUDE file designated RTXCAN.H

#define C_OK
#defineC_NOT_STARTED
#defineC_CONF_ERROR
#defineC_OBJ ERROR
#defineC_TOO_LONG
#defineC_INVALID_TYPE
#defineC_MEM_FULL
#defineC_NOT_STOPPED
#defineC_OBJ_REBIND
#define C_TIMEOUT
#odineC_CAN_FAILURE 10
#defineC_ERR_ACTIVE 11
#defineC_ERR_PASSIVE 12
#defineC_BUS OFF 13
#defineC_SEND_ERROR 14

O© 0O ~NO Ol WNPFO

184

CAN Support

Timing / Initialization

Quick Start

The CAN pratocol provides many parameters for fine tuning thebus timing for
application specific requirements (cable length, noise on the bus, output driver
configuration, ec.). This step requires an extensive understanding of the CAN pratocol
(seethefollowing sections and the CAN controller documentation).

To smplify the beginning with CAN, the following tables provide some typical
configuration values for a number of bit rates.

All values are calculated for a CAN controller crystal frequency of 166 MHz!

ThevaluesBUS TIMING 0, BUS_TIMING_1 and SYNCON are the parameters for
the function call CAN_HW_INIT.

Thevalues MIN(B) and MAX(B) represent the allowed baud rate variation dueto
resynchronisation (in Kbits/s)

Intel 82526

Baud Rate BRP SJW TSE TSE SAM- BUS_- BUS_-

[Kbit/s] Gl G2 PLE TIMING_0 TIMING_1
50 7 4 7 4 1 416 625 C7H B6H 1
100 3 4 7 4 1 83 125 C3H B6H 0
250 1 3 5 4 0 210 308 8IH 34H 0
500 0 3 6 3 0 421 615 8OH 25H 0
1000 0 1 3 2 0 889 1140 OOH 12H 0

RTX-51/ RTX-251 185

Philips 82C200/80C592:

Baud Rate BRP SJW TSE TSE SAM- MIN BUS_- BUS_-
[Kbit/s] G2 PLE TIMING_0 TIMING_1
50 9 4 10 5 1 40 666 COH C9H 1
100 7 3 6 3 1 77 143 87H A5H 0
250 1 3 10 5 0 211 308 8IH 49H 0
500 0 3 10 5 0 421 615 8OH 49H 0
1000 0 2 5 2 0 800 1333 40H 14H 0
Intel 82527:

BUS TIMING_0, BUS TIMING_1, BUS CONFIG, CPU_INTERFACE arethe
relevant parameters for this CAN controller.

Baud Rate BRP SPL TSEGL TSEG2 DSC BUS_- BUS_-
[Kbit/s] TIMING_O TIMING_1
50 9 2 2 10 7 1 87H OFAH
100 7 2 2 10 7 1 83H OFAH
250 1 2 1 5 1 81H 0D8H
500 0 2 1 5 1 80H ODSH
1000 0 2 0 2 1 80H 23H
Siemens 81C90/91:

BIT LENZ, BIT LEN 2 and BRP arethe relevant parameters for this CAN
controller.

Baud Rate BRP SIW TSEG1 TSEG2 BIT_LEN1 BIT_LEN2

[Kbit/s]
100 9 2 3 2 23H 42H
200 2 2 3 2 23H 42H
500 1 2 3 2 23H 42H
1000 0 2 3 2 23H 42H

186 CAN Support

Siemens C515C (10M Hz Clock):

BIT TIMINGO, BIT TIMING1 and BRP are the rdlevant parameters for this CAN

controller.

Baud Rate BRP SJW TSEG1 TSEG2 BIT BIT

[Kbit/s] TIMINGO TIMING1
100 10 2 4 3 8AH 34H
250 2 4 3 82H 34H
500 2 4 3 81H 34H
1000 2 4 3 80H 34H

Bit Timing

A bit timeis subdivided into a certain number of BTL cycles. This number results
from the addition of segments SIW1, TSEG1, TSEG2 and SIW2 plus general segment
INSYNC (seeFigure 2).

OneBit Time

TSEG1

INSYNC| SIwW1

OneBTL CycleTime SamplePoint Transmit Point

Figure 16: Bit Timing (intel 82526 and Philips 82C200, 80592)

RTX-51/RTX-251 187

OneBit Time

SYNC
SEG1 TSEG1 TSEG2

L]

OneBTL CycleTime Samplée Paint Transmit Point

Figure 17: Bit Timing (intel 82527)

INSYNC: Theincoming edge of a bit is expected during this state. This
segment correspondsto one BTL cycle

SIW1and SIW2: Synchronisation jump widths are used to compensate for phase
shifts between clock oscillators of different bus nodes.

Both segments (SIW1 and SIW2) determine the maximum jump
width for resynchronisation and are programmablefrom 1 to 4
BTL cycles. Thewidth of SIW1 isincreased to twicethe
programmed width (max.) during resynchronisation. Thewidth of
SIW2 is reduced or cancdled to shorten the bit time during
resynchronisation.

Resynchronisation can be performed on both edges of the bus
signal: recessive to dominant and dominant to recessive or on the
recessive to dominant edge only, depending on the SYNCON byte
in thefunction call CAN_HW_INIT.

TSEGL: The sampling point is based on the number of BTL cycles
programmed by TSEG1. The sampling point is located at theend
of TSEG1 (SAM=0).

TSEGL is used to compensate dday times on the bus and to
reservetime to tolerate one ore more miss-synchronisation pulses
caused by spikesonthebusline TSEGL is programmablefrom 1

188 CAN Support

to 16 BTL cycles.

The number of samples which are made for one bit can be
programmed. One (SAM=0) or three (SAM=1, not recommended
at bit rates over 125 Khits/s) samples per bit may bemade. One
sample alows higher bit rates whereas three samples gives better
regiection to noise on the bus.

TSEG2: Defines the time between the sampling point and the transmit
point, programmablefrom 1 to 8 BTL cycles.

This segment is necessary to tolerate one or more miss-
synchronisation spikes onthe busline It isalso necessary to
guarantee sufficient timefor the CAN controller to analysethe
sampletaken from the bus and to decideif it has lost arbitration.

OneBit Time
TSEG1 TSEG2
INSYNC SLWJ
OneBTL !
Cycle Time Sample Point Actual Bit Length

Nominal Bit'L ength

Figure 18: Bit Timing (Semens 81C90/91)

INSYNC: The edge of theinput signal is expected during the sync
segment (duration = 1 system clock cycle= 1 fscl).

TSEG1: Timing segment 1 determines the sampling point within a bit
period. Thispoint is always at the end of segment 1. The
segment is programmable from 1 to 16 fscl (see bit length
register BL1).

TSEG2: Timing segment 2 provides extra time for internal processing
after the sampling point. The segment is programmable from 1
to 8 fscl (see bit length register BL1)

RTX-51/RTX-251 189

SIW: To compensate for phase shifts between the oscillator
frequencies of the different bus stations, each CAN controller
must be able to synchronize to the revant signal edge of the
incoming signal. The synchronisation jump width(SIJW)
determines the maximum number of system clock pulses by
which the bit period can be lengthened or shortened for re-
synchronisation. The synchronisation jump width is
programmable from 1 to 4 fscl (see bit length register BL2)

OneBit Time

Sample Point Transmit Point

Figure 19: Bit Timing (Semens C515C)

SYNC SEG: is always one time quantum (Sync Seg. = 1.tq)
tq=(BRP + 1) * (1/fosc)
BRP : Baud rate prescaler (see bit timing register BTRO).

TSEG1: Timing segment 1 determines the sampling point within a bit
period. Thispoint is always at the end of segment 1. The
segment is programmable from 1 to 16 fscl (see bit timing
register BTR1).

TSEG2: Timing segment 2 provides extra time for internal processing
after the sampling point. The segment is programmable from 1
to 8 fscl (seebit timing register BTR1)

190 CAN Support

Sample Point Configuration Requirements

Special reguirements for the configuration of the BTL refer to the location of the
sample point:

The correct location of the sample point isimportant for proper function of a
transmission, especially at high speed and maximum cable length. For this reason, the
following items should be considered:

m Atthedart of aframe al CAN contrallersin the system synchronise"hard" on the
first recessive to dominant edge start bit. During arbitration, however, morethan
one node may simultaneoudly transmit. Two times the bus delay plus the time of
the output driver and theinput comparator may be required until the buslineis
stable

m Theduration of TSEG1 should reflect at least thetotal dday time (two times the
bus dday plustheinternal dday in the range 100 - 200 ns).

= Toimprovethe behaviour with respect to spikes on the bus line, an additional
synchronisation buffer is recommended on theleft and right side of the sample point
to allow one or more non-synchronisation without sampling the wrong position
within abit frame. This buffer should correspond to the time of the SIW segments
(TSEG1 and TSEG2 should not be smaller than SIW).

Intel 82526 Bus Timing

Only afew differences exist between the bus timing calculation for the Intd and Philips
CAN controller. Thetwo contrallers arefully communication compatible, however,
when the baud rateis programmed the same.

82526 Bit Time Calculation

2* (Baud rate prescaler + 1)

RTX-51/RTX-251 191

1BTL Cycle(tBTL) =

f(crystal)

1 Bit Cycle (tar) (INSYNC + SIW1 + TSEG1 + TSEG2 + SIW2) * tar

f(crystal)

Baud rate =

2*(Baud rate prescaler+1)* (INSYNC+SIW1+TSEG1+TSEG2+SIW2)

= 1/ tair

Variation in baud rate due to resynchronisation:
1

MAX(Baud rate)

tair - (SIW2 * tgrL)

MIN(Baud rate)

teir + (SIW1* tgr)
Programming the I ntel 82526

Function CAN_HW_INIT alows the CAN controller bus timing to be programmed.
The parameters refer to 82526 hardware registers in the following way:

- BUS TIMING_ 0 Bustiming register O
- BUS TIMING 1 Bustiming register 1
- SYNCON SYNCON hit in the control register

Bus Timing Register O:

MSB 7 SJwWB Synchronisation Jump Width
6 SJW A
5 BRP 5 Baud Rate Prescaler
4 BRP 4
3 BRP 3

192 CAN Support

2 BRP 2

BRP 1

LSB 0 BRP O
Baud Rate Prescaler (BRP):

TheBTL cycdetimeis determined by programming the six bits of the baud rate
prescaler. TheBTL cycletimeis derived from the system cycletime (the system cycle
timeistwicethe crystal time). The desired baud rateis determined by the BTL cycle
time and the programmable bit timing segments.

BRP=2°* BRP5 + 2* * BRP4 + 2°* BRP3 + 2°* BRP2 + 2! * BRP1 + BRPO
Synchronisation Jump Width (SIW):

The synchronisation jump width defines the maximum number of BTL cycles that a bit
may be shortened or lengthened by one resynchronisation during transmission of adata
frame or remoteframe. Synchronisation jump width is programmable by bits SIW B
and SIW A as depicted in the following table:

SJW B ‘SJWA ‘SJW1=SJW2

0 0 1 BTL cycle
0 1 2 BTL cyles
1 0 3 BTL cycles
1 1 4 BTL cycles

Bus Timing Register 1:

MSB SAMPLE

TSEG 2.2 Time Segment 2
TSEG 2.1
TSEG 2.0
TSEG 1.3 Time Segment 1
TSEG 1.2
TSEG 1.1
TSEG 1.0

ORI W|IAMlO]|] O

LSB

RTX-51/ RTX-251 193

SAMPLE:

This determines the number of samples of the serial bus which are made by the CAN
controller. IF SAMPLE isset to "low", abit is sampled once. If SAMPLE isset to
"high", three samples per bit aremade. SAMPLE=O0 allows higher bit rates whereas
SAMPLE=1 provides better rgection to noise on the bus (SAMPLE=1 is not
recommended at bit rates over 125 Khitg/s).

Time Segment 1 and Time Segment 2 (TSEG1, TSEG2):

TSEG1 and TSEG2 are programmable asillustrated in the tables bd ow:

1. 1. 1 1

0 0 0 0 1BTL cycle
0 0 0 1 2 BTL cycle
0 0 1 0 3 BTL cycle
0 0 1 1 4 BTL cycle
1 1 1 1 16 BTL cycle

0 1BTL cycle
2 BTL cycle
1 1 1 16 BTL cycle

SYNCON:

CAN controller resynchronisation mode. Resynchronisation can be performed on both
edges of the bus signal. Recessive to dominant and dominant to recessive, or on the
recessive to dominant edge only, depending on the SYNCON value

SYNCON=1: on both edges (not recommended at bit rates exceeding 100 Kbits's).

194 CAN Support

SYNCON=0: on the edge of a dominant leve only if the bus levdl monitored at the last
sample point was arecessive leve.

82526 Programming Restrictions
The following configurations are not allowed:

(BRP=0) AND (SAMPLE=0) AND (TSEG2 + SIW?2 < 3BTL cydes)
(BRP=0) AND (SAMPLE=1) AND (TSEG2 + SW?2 < 4 BTL cydes)

(BRP=0) AND (TSEG1 + SW1 < 4 BTL cydes)

(TSEG1 = 1) AND (SW1 < 3BTL cydes)

82526 Programming Example

Baud rate prescaler =0

Crydtal frequency =16 MHz
INSYNC =1BTL cycle (isaways 1)
SIW1 =1BTL cycle

TSEG1 =3BTL cycles

TSEG2 =2BTL cycles

SIW2 =1BTL cycle

SAMPLE =0

tar, =2* (0 + 1)/ 16 MHz =0.125ms

1lbitcyde=(1+1+3+2+1)*0.125ms=8* 0.125ms= 1ms
Baud rate=16 MHz/ (2* (0 + 1) * 8) = 1 Mbitg/s
Variation in baud rate due to resynchronisation:

MAX(baud rate) = 1/ (Ims- (1 * 0.125ms)) = 1.14 Mbitg/s
MIN(baud rate) = 1/ (Ims+ (1 * 0.125ms)) = 0.89 Mbits/s

Parameters for CAN_HW_INIT:

RTX-51/RTX-251 195

BUS TIMING 0 =0H
BUS TIMING 1 =12H
SYNCON =0 (baud rate exceads 100 Kbits/s)

Intel 82527 Bus Timing

82527 Bit Time Calculation
f(cyrstal)

Baud Rate

(DSC + 1) * (BRP + 1) * (3 + TSEG1 + TSEG2)

Programming the I ntel 82527

Function CAN_HW_INIT allows the CAN controller bus timing to be programmed.
The parameters refer to 82527 hardware registers in the following way:

- BUS TIMING_ 0 Bustiming register O
- BUS TIMING 1 Bustiming register 1
- BUS CONFIG Bus configuration register

CPU_INTERFACE CPU interfaceregister

196 CAN Support

Bus Timing Register O:

MSB SIWA Synchronisation Jump Width
SJW B

BRP 5 Baud Rate Prescaler

BRP 4

BRP 3

BRP 2

BRP 1

BRP O

oOlRrINW|IAM|lO|O | N

LSB

Baud Rate Prescaler (BRP):

Thevalid programmed values are 0..63.
The baud rate prescaler programs the length of one time quantum as
follows:

tq=tSCLLK * (BRP +1)

BRP=2"* BRP5 + 2 * BRP4 + 2°* BRP3 + 2°* BRP2 + 2' * BRP1 + BRPO
Synchronisation Jump Width (SIW):

The synchronisation jump width defines the maximum number of BTL cycles that a bit
may be shortened or lengthened by one resynchronisation during transmission of adata

frame or remoteframe. Synchronisation jump width is programmable by bits SIW B
and SIW A as depicted in the following table:

SJW B ‘SJWA ‘SJW1=SJW2

0 0 1BTL cycle
0 1 2 BTL cyles
1 0 3 BTL cycles
1 1 4 BTL cycles

RTX-51/ RTX-251 197

Bus Timing Register 1:

MSB SAMPLE
TSEG 2.2 Time Segment 2
TSEG 2.1
TSEG 2.0
TSEG 13 Time Segment 1
TSEG 1.2
TSEG 1.1
TSEG 1.0

OlRrIN] W|IAMlO]| O

LSB

SAMPLE:

This determines the number of samples of the serial bus which are made by the CAN
controller. IF SAMPLE isset to"low", ahit is sampled once. If SAMPLE isset to
"high", three samples per bit aremade. SAMPLE=O0 allows higher bit rates whereas
SAMPLE=1 provides better rgection to noise on the bus (SAMPLE=1 is not
recommended at bit rates over 125 Khitg/s).

Time Segment 1 and Time Segment 2 (TSEG1, TSEG2):

TSEG1 and TSEG2 are programmable asillustrated in the tables bd ow:

1. 1. 1 1

0 0 0 0 1BTL cycle
0 0 0 1 2 BTL cycle
0 0 1 0 3 BTL cycle
0 0 1 1 4 BTL cycle

1 1 1 1 16 BTL cycle

198 CAN Support

1BTL cycle
1 2 BTL cycle
1 1 1 8 BTL cycle

Bus Configuration Register:
MSB 7 0

6 CoBy

5 Pol

4 0

& DCT1

2 0

1 DcR1
LSB 0 DcRO

Comparator Bypass (CoBy):

One: Theinput comparator is bypassed and the RXO0 input is regarded as
the valid bus input(DcRO must be set to zero).

Zero: Normal operation: RX0 and RX1 are the inputs to the input
comparator.

Polarity(Pol):

One: if the input comparator is bypassed then alogical oneis interpreted as
dominant and a logical zero is recessive on the RX0 input.

Zero: If the input comparator is bypassed then alogical oneis interpreted
asrecessive and alogical zero is dominant bit on the RXO0 input.

Disconnect TX1 output(DcT1):

RTX-51/RTX-251 199

One: Disables the TX1 output driver. This modeisfor usewith asingle
wire busline, or in the case of a differential bus when the two bus lines are
shorted together.

Zero: Enables the TX1 output driver (default after hardware reset).

Disconnect RX1 input(DcR1):

One: RX1 isdisabled and the RX1 input is disconnected from the inverting
comparator input and is replaced by a VCC/2 reference voltage.

Zero: RX1 is enabled and the RX 1 input is connected to the inverting input
of the input comparator.

Disconnect RXO0 input(DcRO):

One: RX0 is disabled and the RX0 input is disconnected from the non-
inverting comparator input and replaced by a VCC/2 reference voltage.
The MUX bit isin the CPU Interface register(02H) must be set to oneto
activate the VCC/2 reference voltage.

Zero: RX0 is enabled and the RXO0 input is connected to the non-inverting
input of the input comparator.

CPU Interface Register:

MSB RstSt
DSC
DMC

PwD

Sleep
MUX
0

Cen

oOlRrINW|AM|lO|O | N

LSB

Hardware reset status (RstSt):

One The hardware reset of the 82527 is active (RESET# is low). While
reset is active, no access to 82527 is possible.

Zero: Normal operation,. the CPU must insure this bit is zero before the
first access to the 82527 after reset is done.

This bit is written by the 82527.

200 CAN Support

Divide system clock(DSC):

The SCLK may not exceed 10 Mhz.

One The system clock, SCLK, isequal to XTAL/2.
Zero: The system clock, SCLK, isequal to XTAL.
This bit is written by the CPU.

Divide memory clock(DMC):

The memory clock may not exceed 8 MHz.

One: The memory clock, MCLK is equal to SCLK/2.
Zero: The memory clock, MCLK is equal to SCLK.
This bit is written by the CPU.

Power down mode enable(PwD) and Sleep mode enable(Sleep):

PwD Sleep

zero zero Both Power Down and Sleep Mode are not active.
one zero Power Down Modeisis active.

zero one Sleep Mode is active.

This bit is written by the CPU.
Multiplex for 1ISO Low Speed Physical Layer(MUX):

If VCC/2 is used to implement the basic CAN physical layer, pin 24
provides the voltage output VCCC/2, and pin 11 is the interrupt output
transmitted to the CPU. Otherwise. only theinterrupt is available on pin
24.VVCC/2 is only available during normal operation and during Sleep

M ode and not during Power Down Mode.

NOTE:
The DcR1 bit (address 2FH) must be set to enable VCC/2 on pin 24.

One: 1SO low speed physical layer active: pin 24 = VCC/2, pin 11 = INT#.
Zero: Normal operation: pin24 = INT#, pinll = P2.6.

RTX-51/RTX-251 201

Clockout enable(Cen):

One: Clockout signal is enabled.
Zero: Clockout signal is disabled.

Siemens 81C90/91 Bus Timing

81C90/91 Bit Time Calculation
fosc =1/ ferystal
fscl = (BRP + 1)*2*fosc
fscl = (BRP + 1)*(2/ fcrystal)
TSEG1 =(TS1 +1)*fscl
TSEG2 =(TS2 +1)*fscl
SIWidth = (SIW + 1)*fscl
Bit length
fbl = TSEG1 + TSEG2 + 1 fscl
f(crystal)

Baud rate =

(2*(BRP + 1) * (3 + TSEGL + TSEG2))

Programming the Siemens 81C90/91

Function CAN_HW_INIT allows the CAN controller bus timing to be programmed.
The parameters refer to 81C90/91 hardware registers in the following way:

- BIT_LENGTH_1 REG Bit length register 1

- BIT_LENGTH_2 REG Bit length regjster 2

- OUT_CONTROL_REG Output control register
- SLEEP AND BR_PRESCALE Combination of :

Sleep mode enable(SME) of

202

CAN Support

Contral register and baud rate
prescaler

- CLOCK_CONTROL_REG Clock control register.
Determines the output
frequency at pin CLK.

Bit Length Register 1:

MSB SAM Sample rate

TS2.2 Length of segment 2
TS2.2
TS2.0
TS1.3 Length of segment 1
TS1.2
TS1.1
TS1.0

oOlRrINMNW|AM|lO|O | N

LSB

SAM: Samplerate

One: Input signal is sampled three times per bit.
Zero: Input signal is sampled once per bit.
Note: Bit SAM should only be set to 1 using very low baud rates.

TS2.2-TS2.0: Length of segment 2 (TSEG2)
TSEG2=(TS2 + 1) * fscl
TS1.3-TS1.0: Length of segment 2 (TSEG1)

TSEG1 = (TS1 + 1) * fscl

RTX-51/RTX-251 203

Bit Length Register 2:

MSB 7 IPOL Input polarity

6 DI Digital Input

5

4

8

2 SM Speed mode

1 SJw.1 Maximum synchronisation jump width
LSB 0 SJW.0

SIW.1-SIW.0:Maximum synchronisation jump width.
SIWidth = (SJW + 1) * fscl
SM: Speed mode

Determines which edges are used for synchronisation.

One: Both edges are used.

Zero: Recessive to dominant is used.

Note: According to CAN specification this bit should not be set to 1.

DI: Digital input

One Theinput signal on pin RXO0 is evaluated digitally. The input
comparator isinactive. Pin RX 1 should be on Vss.
Zero: Theinput signal is applied to the input comparator.

IPOL: Input polarity

One Theinput leve is inverted.
Zero: Theinput level remains unaltered.

204 CAN Support

Output Control Register:

MSB OCTP.1
OCTN.1
OCP.1
OCTP.O
OCTN.O
OCP.0
OCM.1

OCM.0

oOlRrINW|IAM|lO|O | N

LSB

Output modes:

OCM.1 OCM.0 Output mode

0 X Normal mode TXO0 = Bit sequence, TX1 = Bit sequence
1 0 Test mode TXO = Bit sequence, TX1 = RX0
1 1 Clock mode TXO = Bit sequence, TX1 = Bit clock

RTX-51/RTX-251 205

Output programming:
OCTP.x OCTN.x OCP.x Data TxP TxN Txx-Level ‘
0 0 0 O=dominant OFF OFF float
0 0 0 1=recessive OFF OFF float
0 0 1 0 OFF OFF float
0 0 1 1 OFF OFF float
0 1 0 0 OFF ON LOW
0 1 0 1 OFF OFF float
0 1 1 0 OFF OFF float
0 1 1 1 OFF ON LOW
1 0 0 0 OFF OFF float
1 0 0 1 ON OFF HIGH
1 0 1 0 ON OFF HIGH
1 0 1 1 OFF OFF float
1 1 0 0 OFF ON LOW
1 1 0 1 ON OFF HIGH
1 1 1 0 ON OFF HIGH
1 1 1 1 OFF ON LOW
Sleep and BR Prescale Register:
MSB 7 ---
6 SME Sleep mode enable
5 BRP5 Baud rate prescaler
4 BRP4
3 BRP3
2 BRP2
1 BRP1
LSB 0 BRPO

SME: Sleep mode enable

One: The sleep modeis enabled: the crystal oscillator is deactivated, all other
activates are inhibited.

Thewake up is done by areset signal or by an active signal at the CS pin or by an
input edge going from recessive to dominant at pin Rx0 or Rx1.

Zero: Normal operation.

206 CAN Support

Clock Control Register:

MSB

CC3
cc2
CcC1
CCo

oOlRrINW|IAM|lO|O | N

LSB

@]
9]
w
@]
O
N
@]
0O
=

CCo Output frequency ‘

fosc

fosc/2

fosc/4

fosc/6

fosc/8

fosc/10

fosc/12

fosc/14

switched off (low level)

P O O O O ©O o o o
X B P P P O O O O
X B B O O+ » O O
X B O b O +Fr»r O +» O

81C90/91 Programming Example

Init the CAN communication controller (81C91)for a baud rate of 1000K bauds/s
(CAN controller with 16000 kHz clock):

Baud rate prescaler reg.

-------- BRPS BRP4 BRP3 BRP2 BRP1 BRPO
0O 0 O 0 0 0 0 0 =00H

fscl = (BRP + 1)*2*fosc (fosc =1/ ferystal)
fscl = (BRP + 1)*(2/ ferystal) = (0 + 1) * 2/ 16000 = 1 / 8000 = 0.000125 mS

RTX-51/RTX-251 207

Bit Length Register 1:

SAM TS2.2TS2.1 TS2.0 TSL.3 TS1.2 TSL.1 TSLO
o 0 1 o0 0 0 1 1 =23

TS1=3

TS2=2

TSEGL =(TSL +1)*fsdl = (3 + 1)*fscl = 4 * 0.000125 =0.0005 mS

TSEG2 =(TS2 +1)*fscl = (2 + 1)*fsdl = 3* 0.000125 = 0.000375 MS

Bit Length Register 2:

20/ o) J—— SIM SIW.1 SIW.2

O 00 0 O 0 1 0 =02H
SIWidth = (SIW + 1)*fsdl = (2 + 1)*fscl = 0.000375 mS
Bit length:

fbl = TSEG1 + TSEG2 + 1 fscl = 0.0005 + 0.000375 + 0.000125 = 0.001mS

Baud rate:
BR = ferystal / (2*(BRP+1)*(TS1+TS2+3)) = 16000 / (2*(0+1) * (3+2+3))

= 1000 kHz

208 CAN Support

Philips 82C200/80C592 Bus Timing

Only afew differences exist between the bus timing calculation for the Intd and Philips
CAN controller. Thetwo contrallers arefully communication compatible, however,
when the baud rateis programmed the same.

82C200/80C592 Bit Time Calculation

2* (Baud rate prescaler + 1)

1BTL Cycle(tsr)

(crystal)

1 Bit Cycle (tair) = (INSYNC + TSEG1 + TSEG2) * tar.
f(crystal)

Baud rate =

2* (Baud rate prescaler + 1) * (INSYNC + TSEGL1 + TSEG2)

1/ter
Variation in baud rate due to resynchronisation:
1

MAX (Baud rate)

tair - (SIW2* tgr1)

1

MIN(Baud rate)

tar + (SIW1 * tar)
Programming the Philips 82C200/80C592

Function CAN_HW_INIT allows the CAN controller bus timing to be programmed.
The parameters refer to 82C200 hardware registers in the following way:

- BUS TIMING_ 0 Bustiming register O

- BUS TIMING_1 Bustiming register 1

RTX-51/RTX-251 209

- SYNCON SPEED MODE bit in the control register

Bus Timing Register O:

MSB SJWB Synchronisation Jump Width
SIW A

BRP 5 Baud Rate Prescaler

BRP 4

BRP 3

BRP 2

BRP 1

BRP O

oOlRrINW|A|lO|O | N

LSB

Baud Rate Prescaler (BRP):

TheBTL cycetimeis determined by programming the six bits of the baud rate
prescaler. TheBTL cycletimeis derived from the system cycletime (the system cycle
timeistwicethe crystal time). The desired baud rateis determined by the BTL cycle
time and the programmable bit timing segments.

BRP=2°* BRP5 + 2** BRP4 + 2°* BRP3 + 2°* BRP2 + 2! * BRP1 + BRPO
Synchronisation Jump Width (SIW):

The synchronisation jump width defines the maximum number of BTL cycles that a bit
may be shortened or lengthened by one resynchronisation during transmission of adata
frame or remoteframe. Synchronisation jump width is programmable by bits SIW B
and SIW A as depicted in the following table:

SIJW 1=SJW 2
0 0 1 BTL cycle
0 1 2 BTL cycles
1 0 3 BTL cycles
1 1 4 BTL cycles

210 CAN Support

Bus Timing Register 1:

MSB SAMPLE
TSEG 2.2 Time Segment 2
TSEG 2.1
TSEG 2.0
TSEG 13 Time Segment 1
TSEG 1.2
TSEG 1.1
TSEG 1.0

ORI W|IAMlO]|] O

LSB

SAMPLE:

This determines the number of samples of the serial bus which are made by the CAN
controller. IF SAMPLE isset to"low", ahit is sampled once. If SAMPLE isset to
"high", three samples per bit aremade. SAMPLE=O0 allows higher bit rates, whereas
SAMPLE=1 provides better rgection to noise on the bus (SAMPLE=1 is not
recommended at bit rates over 125 Khitg/s).

Time Segment 1 and Time Segment 2 (TSEG1, TSEG2):

TSEG1 and TSEG2 are programmable asillustrated in the tables bd ow:

1BTL cycle

3 BTL cycle

1 1
0 0
0 1 2 BTL cycle
1 0
1 1 4 BTL cycle

1 1 1 1 16 BTL cycle

RTX-51/RTX-251 211

1 BTL cycle
1 2 BTL cycle
1 1 1 16 BTL cycle

SYNCON:

CAN controller resynchronisation mode. Resynchronisation can be performed on both
edges of the bus signal: recessive to dominant and dominant to recessive, or onthe
recessive to dominant edge only, depending on the SYNCON value

SYNCON=1: Synchronisation on both edges (not recommended at bit
rates over 100 Khitg/s).

SYNCON=0: Synchronisation on the edge of a dominant leve only if the
bus level monitored at the last sample point was a recessive
leve.

82C200/80592 Programming Example

Baud rate prescaler =9
Crydtal frequency =16 MHz
INSYNC =1BTL cycle (isaways 1)

SIW1 =4BTL cycles

TSEG1 =4 BTL cycles

TSEG2 =3 BTL cycles

SIW2 =4BTL cycle

SAMPLE =1

ter.=2* (9+ 1)/ 16 MHz =1.25ms
1bitcycde=(1+4+3)* 1.25ms=8* 1.25ms=10ms

Baud rate= 16 MHz/ (2* (9 + 1) * 8) = 100 Kbits/s

212 CAN Support

Variation in baud rate due to resynchronisation:

MAX (baud rate) = 1/ (10ms- (4 * 1.25ms)) = 200 Kbits's
MIN(baud rate) = 1/ (10ms+ (4 * 1.25ms)) = 66.6 Kbits/s

Parameters for CAN_HW_INIT:

BUS TIMING_O =C9H
BUS TIMING_1 =A3H
SYNCON =0

Siemens C515C Bus Timing

Only afew differences exist between the bus timing calculation for the Intel and
Siermens CAN controller. Thetwo controllers are fully communication compatible,
however, when the baud rate is programmed the same.

C515C Bit Time Calculation

(Baud rate prescaler + 1)

1BTL Cycle(tsr)

(crystal)
1 Bit Cycle (tar) = (INSYNC + TSEG1 + TSEG2) * tar.
f(crystal)
Baud rate =
(Baud rate prescaler + 1) * (INSYNC + TSEG1 + TSEG?)
= 1/tar
Programming the Semens C515C

Function CAN_HW_INIT allows the CAN controller bus timing to be programmed.
The parameters refer to C515C hardware registers in the following way:

RTX-51/RTX-251

213

- BUS TIMING_ 0O Bustiming register O
- BUS TIMING_1 Bustiming register 1

Bus Timing Register O:

MSB SJWB Synchronisation Jump Width
SIW A

BRP 5 Baud Rate Prescaler

BRP 4

BRP 3

BRP 2

BRP 1

BRP O

oOlRrINW|A|lO|O | N

LSB

Baud Rate Prescaler (BRP):

TheBTL cycetimeis determined by programming the six bits of the baud rate
prescaler. TheBTL cycletimeis derived from the system cycletime (the system cycle
timeistwicethe crystal time). The desired baud rateis determined by the BTL cycle
time and the programmable bit timing segments.

BRP=2°* BRP5 + 2* * BRP4 + 2** BRP3 + 2°* BRP2 + 2! * BRP1 + BRPO

Synchronisation Jump Width (SIW):

The synchronisation jump width defines the maximum number of BTL cycles that a bit
may be shortened or lengthened by one resynchronisation during transmission of adata
frame or remoteframe. Synchronisation jump width is programmable by bits SIW B
and SIW A as depicted in the following table:

1 BTL cycle

2 BTL cycles
3 BTL cycles
4 BTL cycles

~ » O O
» O + O

214 CAN Support

Bus Timing Register 1:

MSB 0
TSEG 2.2 Time Segment 2
TSEG 2.1

TSEG 2.0

TSEG 13 Time Segment 1
TSEG 1.2

TSEG 1.1

TSEG 1.0

ORI W|IAMlO]|] O

LSB

Time Segment 1 and Time Segment 2 (TSEG1, TSEG2):

TSEG1 and TSEG2 are programmable asillustrated in the tables bd ow:

1. 1. 1 1

0 0 0 0 1BTL cycle
0 0 0 1 2 BTL cycle
0 0 1 0 3 BTL cycle
0 0 1 1 4 BTL cycle
1 1 1 1 16 BTL cycle

0 1BTL cycle
0 0 1 2 BTL cycle

1 1 1 16 BTL cycle

RTX-51/RTX-251

215

C515C Programming Example
Baud rate prescaler =9
Crydtal frequency =16 MHz

SIW =4BTL cyces
TSEG1 =4 BTL cycles
TSEG2 =3 BTL cycles

tar. = (9 + 1)/ 16 MHz = 0.625ms

1lbitcycde=(1+4+ 3)* 0.625ms=8* 0.625ms=5ms
Baud rate= 16 MHz/ ((9 + 1) * 8) = 200 Kbits/s
Variation in baud rate due to resynchronisation:

MAX(baud rate) = 1/ (5ms- (4 * 0.625ms)) = 400 Kbits/s
MIN(baud rate) =1/ (5ms+ (4* 0.625ms)) = 133.3 Kbits/s

Parameters for CAN_HW_INIT:

BUS TIMING 0 = CoH
BUS TIMING 1 = 34H

Application Examples

Example 1 (Philips 82C200/80592)

#pragma | ar ge

#pr agma debug

#pragma regi st er bank(0)

#pragma pagel engt h(80) pagew dt h(110)
/*******~k***
* METTLER & FUCHS AG CH 8953 D etikon, Tel. 01-740 41 00 *
R R R R EEE RS S EEEEEEE SRR R EEEEEEEEEEEEREEEEEEEEEREEEEEEEEEREEEEEEEEREEEEEEEEEEESES
R R R R SRR RS SR EEEEE SRR R EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEREEEEEEEEEEESES

* *

216

CAN Support

* BCAN

*

DEMO

PROGRAMM

*

*

R R R R EEE RS SRS EEEE SRR EEES

R R R R EEE RS SRS EEEE S SRR EEEEEEEEEEEEREESEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEESES

* *
Pur pose:
Sinpl e deno program for the RTX-51 CAN interface
Target system
8051 systemw th Philips 82C200 or 80592 CAN controll er
Har dwar e specific features reside in file BCANCONF. A51 or
COONF592. A51.
Fi | e nane BCANDEMD, C51

LRSS E SR EEREEE SR EEEEEREEEEEEEEEREEEEEEEEEREEEEEEEEEREEEEEEEEEEEEEEEEEEEEEE T

\er si ons:

- 19. Novenber 1990; Th. Fischler; Version 0.1
First Version

- 14. Cctober 1991; Th. Fischler; Version 1.0
adapted to RTX-51 V4.0

F 0% F F F X X X X X X X X X X X X X X

EEEE RS R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEE T

Al rigths reserved by METTLER & FUCHS AG CH 8953 DI ETI KON *

***/

L I S I I I I N S I I

/* | MPORTS */

#i ncl ude <reg51. h>
#i ncl ude <rtx51. h>

/* Processor-specific registers */
/* RTX-51 function calls (Use */
/* file RTX251. H for RTX-251) */
#i ncl ude "rtxcan. h" /* CAN function calls */

/* DEFI NES */

#defi ne SEND_TASK 1
#defi ne REC TASK 2

/* dobal variables */
/* * [

struct can_nessage_struct xdata ts, tr; /* CAN send and receive data */
unsi gned char i;
unsigned int t1 count, t2_count;

/**/

/* TEST TASK *l

/**/

RTX-51/ RTX-251 217

void rec_task (void) _task_ REC TASK _priority_ 1
for (55) {

can_receive (Oxff, &r);
t 2_count ++;

voi d send_task (void) _task_ SEND TASK

/* Start CAN Task */
if (can_task create() == C X) {

/* Init the CAN comruni cation controller for a baud rate */
/* of 50 Kbauds/s (CAN controller with 16 MHz cl ock): */
/* Baud rate prescaler : 19 */
/* I NSYNC 1 */
/* TSEGL 4 */
/* TSE@ ;3 */
/* SIWL=SJW2 4 */
/* SAMPLI NG 1 (three sanples / bit taken)*/
/* SYNCH- Mbde 1 (transitions fromrecessive*/
/* to dom nant and vice versa*/
[* are used for */
[* resynchr oni sati on) */
[* */
fj tBTL = 2 * (19 + 1) / 16 MEz = 2.5n8)
/* 1 bit cycle = (1 +4 + 3) * 2.5n8 = 20 n® */
/* Baud rate = 16 Mz / (2 * (19 + 1) * 8) = 50 Kbits/s */
[* */
/* Variation of bit time due to resynchronisation */
/* MAX(Baud rate) = 1 / (20ns-(4*2.5nm8)) = 100 Kbauds/s */
/* MAX(Baud rate) = 1 / (20ns+(4*2.5nms)) = 33.3 Kbauds/s */
[* */
/* Set output-control register to FFH */
[* */

can_hw_ i nit (0xd3, 0xa3, Oxff, 1, 0);

/* Cbject definition */

can_def _obj (1,8, D SEND);

can_def _obj (2,8,D REC);

/* Set the RTX-51 systemclock to 20 ns (12 Miz cl ock) */
os_set _slice (20000);

/* Oreate the receive task */
os_create_task (REC TASK);

/* Start communi cation */
can_start();

t1_count
t 2_count

0
0

/* Init the send object */
ts.identifier = 1;
for (i=0; i<=7; i++) ts.c_data[i] =i;
for (5;) {

/* Send an object every 100 ns */

218 CAN Support

can_send (&ts);

os_wait (K TMO 5, 0);

/* Fill object with new data */

for (i=0; i<=7; i++) ts.c_data[i]=ts.c_data[i]+1;
t1 _count ++;

}

/**/

/* NMAIN PROGRAM */

/**/

void mai n (void)
{
os_start _system (SEND_TASK) ;

}
/* END of MODULE BCANDEND */

Compiling and L inking the Program for the Philips 80C592:

c51. exe bcandeno. c51
a51. exe cconf592. a51
a51. exe rtxconf.a51

BL51 bcandenp. obj, cconf 592. obj, rt xconf. obj, canp592.1ib rtx51 ransi ze(256)

Depending on the CAN controller chip and CPU used above shown sequence has to be
modified dightly (see examples contained on distribution disk).

Example 2 (intd 82527)

#pragna | arge

#pragma debug

#pragma regi st er bank(0)

#pr agma pagel engt h(80) pagew dt h(110)

/***

/**
* METTLER & FUCHS AG CH- 8953 Dietikon, Tel. 01-740 41 00 *
EE I R I S R R R I S R I R O O

EE I R R I S R R I R S R S R I

* *
*GCANDEMO *
* *

EE I R I S R R I S R I S
EE R R R R I S R R R R R R R O

* *

Pur pose:
Si npl e denp-program for the RTX-51 CAN-Interface

* X X X

*
*
*
*

Tar get system

RTX-51/ RTX-251 219

8051-systemwith Intel 82527 CAN- Controll er
HWspecific features resides in the file GCANCONF. A51

Fi | enanme . GCANDEMO. C51

Ver si onen:

- 17. January 1996; K. Birsen; Version 0.1 :
First Version

* *
* *
* *
* *
* *
* *
EE R R R S R R I R R I R I
* *
* *
* *
* *
* *

*

EE R I S I I S I I I S I S I S R S I

* all rigths reserved by METTLER & FUCHS AG CH8953 DI ETI KON *

***/

/* | MPORTS */

BE=========3
#i ncl ude <rtx51. h> /* RTX-51 function calls */
#i ncl ude "rtxcan. h" /* CAN function calls */

[* DEFI NES */

#def i ne SEND_TASK
#def i ne REC TASK_1
#def i ne REC_TASK_2
#def i ne REC_TASK_3

A WON PR

/* d obal variables */
/* */

/* CAN-send and receive data */
struct can_message _struct xdata ts[14];
struct can_nessage_struct xdata tr[14];

unsi gned char i, j, done;
unsi gned int nx;
unsi gned int dent;

unsi gned char count[14];

/***/

/* Test Tasks */
/***/
void rec_task_1 (void) _task_ REC TASK 1 priority_ 1

{

unsi gned char i;
done = can_bind_obj (1);

for (;;) {
/* wait for Message #1 */
done = can_wait (Oxff, &r[1]);
if (done == C_X){

220 CAN Support

done = can_get _status();
if (tr[1].identifier == 1){
/* Message 6 ts.datas = datas of received message */
for (i=0; i<=7; i++) ts[6].c_data[i]=tr[1].c_data[i];
count [1] ++;
/* count --> 1. data of Message 9 */
ts[9].c_data[0] = count[1];
/* send Message 9 */
done = can_send(& s[9]);

}
}
}
}
void rec_task_2 (void) _task_ REC TASK 2 priority_ 1
{
unsi gned char i;
done = can_bi nd_obj (2);
for (;;) {
done = can_wait (Oxff,&r[2]);
if (done == C_X){
done = can_get _status();
if (tr[2].identifier == 2){
for (i=0; i<=7; i++) ts[7].c_data[i]=tr[2].c_data[i];
count [2] ++;
ts[10].c_data[0] = count[2];
done = can_send(&t s[10]);
}
}
}
}
void rec_task_3 (void) _task_ REC TASK 3 priority_ 1
{
unsi gned char i;
done = can_bi nd_obj (3);
for (;;) {
done = can_wait (Oxff, &r[3]);
if (done == C_OX){
done = can_get _status();
if (tr[3].identifier == 3){
for (i=0; i<=7; i++) ts[8].c_data[i]=tr[3].c_data[i];
count [3] ++;
ts[11].c_data[0] = count[3];
done = can_send(&ts[11]);
}
}
}
}

voi d send_task (void) _task_SEND TASK
{

RTX-51/ RTX-251 221

/* Start CAN- Task */
if (can_task create() == C OXK) {

/* Init the CAN comm controller (82527)for a baud rate */
/* of 1000Kbauds/s (CAN controller with 16 MHz cl ock): */
/* SJW Resyncroni zation jump width: 2 */
/* BRP Baud rate prescaler: 0 */
/* Spl Sanpling node: O */
/* TSEGL: 2 */
/* TSE&: 3 */
/* CoBy Conparator bypass: 1 */
/* Pol Polarity: O */
/* DcTl Di sconnect TX1 output: 1 */
/* DcT2 Disconnect Rx1 input: 1 */
/* DcRO Disconnect RXO input: O */
/* RstSt Hardware reset status: O */
/* DSC Divide systemclock: 1 */
/* DMC Divide nenory clock: O */
/* PwD Power down npde enabled: O */
/* Sleep Sleep node enable: 0 */
/* MJIX Multiplex for 1SO | ow speed physical |ayer: O */
/* Cen C occkout enable: 1 */
/* Baud rate = XTAL / [(DSC+1)*(BRP+1)*(3+TSEGL + TSE®)] */
/* Baud rate = 16000/ [(1 +1)*(0 +1)*(3+2 + 3)] */
/* = 1000KHz */
/* */
/* init for 1000KHz Baud */
/* can Bus freq = XTAL/[(DSC+1)*(BRP+1) * (3+TSEGL+TSEG2) | */
/* can Bus freq = 16000 / [(2)*(1)*(8)] */
/* BTRO BTR1 BUS_CONFI G CPU_I F dummy */
done = can_hw_init (0x80, 0x23, Ox5E, 0x41, 00) ;
done = can_get _status();

/* Receive Objects definitions */
done= can_def_obj (1,8,D REC);
done = can_get_status();

done= can_def_obj (2,8,D REC);
done = can_get_status();

done= can_def_obj (3,8,D REC);
done = can_get_status();

done= can_def_obj (4,8,D REC);
done = can_get _status();

done= can_def_obj (5, 8,D REC);
done = can_get_status();

/* Send Objects definitions */
done= can_def_obj (6,8, D SEND);
done = can_get _status();

done= can_def_obj (7,8, D SEND);
done = can_get _status();

done= can_def_obj (8,8, D SEND);
done = can_get_status();

done= can_def_obj (9,8, D SEND);
done = can_get _status();

222

CAN Support

done= can_def_obj (10,8, D_SEND);
done = can_get _status();
done= can_def_obj (11,8, D_SEND);
done = can_get_status();

/* |load send identification and datas */

for (inx=6; inx<=11; inx++){
ts[inx].identifier = inx;
for (i=0; i<=7; i++) ts[inx].c_data[i]=0;
done = can_wite(&s[inx]);

}

/* Automatic answer to request object definition */
done= can_def_obj (12,8, D SEND R REC);

done = can_get _status();

/* load identification and datas */
ts[12].identifier = 12;

for (i=0; i<=7; i++) ts[12].c_data[i]=0;

done = can_wite(&ts[12]);

/* Set the RTX-51 System C ock to 10 nms (12MHz C ock) */
os_set_slice (10000);

/* Create the receivetasks */
os_create task (REC TASK 1);
os_create task (REC TASK 2);
os_create_task (REC TASK 3);

for (inx=0; inx<=13; inx++){
count[inx] = 0;
}

/* start Can controller */
done = can_start();

for (;;) {
/* if Object 1 received, send Object 6 */
if (count[1] > 0){
ts[6].c_data[0] = count[1];
done = can_send(&ts[6]);
done = can_get_status();
os_ wait (K. TMO 5, 0);
count[1]--;

}
/* if Object 2 received, send Object 7 */
if (count[2] > 0){

ts[7].c_data[0] = count[2];

done = can_send(& s[7]);

done = can_get _status();

os_ wait (K. TMO, 5, 0);

count[2]--;
}
/* if Object 3 received, send Object 8 */
if (count[3] > 0){

ts[8].c_data[0] = count[3];

done can_send(& s[8]);

done can_get _status();

RTX-51/ RTX-251 223

os_ wait (K. TMO, 5, 0);
count[3]--;

/***/

/* NMAIN PROGRAM */

/***/
void main (void)

{

}
/* END of MODULE GCANDEMO */

os_start_system (SEND_TASK) ;

Compiling and Linking the Program for the I ntel 82527:

c51. exe gcandeno. c51 defi ne(EXTEND)
abl. exe gcanconf. a51
a51. exe rtxconf. a51

BL51 gcandenp. obj, gcanconf. obj, rtxconf.obj,rtxgcan.lib rtx51 ransize(256)

Depending on the CAN controller chip and CPU used above shown sequence has to be
modified dightly (see examples contained on distribution disk).

Example 3 (Siemens 81C90/91)

#pragna | arge

#pragma debug

#pragma regi st er bank(0)

#pr agma pagel engt h(80) pagew dt h(110)

/***

* METTLER & FUCHS AG CH- 8953 Dietikon, Tel. 01-740 41 00 *

EIE R I I S S R I R I S S R O

EIE R I I S R R I O R S S S R O O

* *

HCANDEMO

EE R R R R I I R I I R I R I R I I R

EE R R R R R I I R I R R R R I I R

Si npl e denp-program for the RTX-51 CAN-Interface

Tar get system
8051-system wi th Si enens 81C90/91 CAN- Control |l er
HWspecific features resides in the file HCANCONF. A51

ECE I D T I R I R

*
*
*
*
*
* Purpose:
*
*
*
*
*

224

CAN Support

*

* Fil enane . HCANDEMO. C51

*

*

*

*

EIE I I I I I S R R I O R O O

* \ersions:

*

* - 21. Maerz 1996; K. Birsen; Version 0.1 : First Version

*

*

*

*

*

EIE I I I S S R I I I R O O

* all rigths reserved by METTLER & FUCHS AG CH- 8953 DI ETI KON

*

**/

/* | MPORTS */

BE=========3
#i ncl ude <rtx51. h> /* RTX-51 function calls */
#i ncl ude "rtxcan. h" /* CAN function calls */

[* DEFI NES */

#def i ne SEND_TASK
#def i ne REC TASK_1
#def i ne REC_TASK_2
#def i ne REC_TASK_3

A WON PR

/* d obal variables */
/* */

/* CAN-send and receive data */
struct can_nessage_struct xdata ts;
struct can_nessage_struct xdata tr;

unsi gned char i, j, done;
unsi gned i nt i nx;
unsi gned i nt i dent;

unsi gned char xdata count[14];

/**/

/* Test Tasks

*/

/**/

void rec_task_1 (void) _task_ REC TASK 1 priority_ 1
{

unsi gned char i;
done = can_bi nd_obj (0x10);

for (;;) {
/* wait for message */
done = can_wait (Oxff, &r);
if (done == C_OK){
count [1] ++;
done = can_get _status();

RTX-51/ RTX-251 225

if (tr.identifier == 0x10){
ts.identifier = O0Ox11;
for (i=0; i<=7; i++) ts.c_data[i]=tr.c_data[i];
ts.c_data[0] = count[1];
done = can_send(&ts);

}
}
}
}
void rec_task 2 (void) _task_ REC TASK 2 priority_ 1
{
unsi gned char i;
done = can_bi nd_obj (0x20);
for (;;) {
/* wait for nmessage */
done = can_wait (Oxff, &r);
if (done == C_X){
count [2] ++;
done = can_get _status();
if (tr.identifier == 0x20){
ts.identifier = 0x21;
for (i=0; i<=7; i++) ts.c_data[i]=tr.c_data[i];
ts.c_data[0] = count[2];
done = can_send(&ts);
}
}
}
}
void rec_task 3 (void) _task_ REC TASK 3 priority_ 1
{
unsi gned char i;
done = can_bi nd_obj (0x30);
for (;;) {
/* wait for message */
done = can_wait (Oxff, &r);
if (done == C_X){
count [3] ++;
done = can_get _status();
if (tr.identifier == 0x30){
ts.identifier = 0x31;
for (i=0; i<=7; i++) ts.c_data[i]=tr.c_data[i];
ts.c_data[0] = count[3];
done = can_send(&ts);
}
}
}
}

voi d send_task (void) _task_SEND TASK
{

226 CAN Support

/* Start CAN- Task */
if (can_task create() == C_ OX) {

/* Init the CAN conmunication controller (81C91)for a baud rate */

/* of 1000Kbauds/s (CAN controller with 16 MHz cl ock) */
[* */
/[* Bit Length Register 1 : */
/* ___ */
[* SAM TS2.2 TS2.1 TS2.0 TS1.3 TS1.2 TS1.1 TS1.0 */
/[* 0 O 1 0 0 0 1 1 */
[* */
/* TSEGL =(TS1 +1)*fscl */
/* TSEG2 =(TS2 +1)*fscl */
[* */
/[* Bit Length Register 2 : */
/* __ */
[* IPOL DI ----- —--- oo SIM SIJW1 SIJW?2 */
/* 0 1 0 0 0 0 1 0 */
[* */
[* SJWdth = (SIW+ 1) *fscl */
/[* SIM=1 */
[* */
/* sleep_and_br _prescale : sets bits BRPX(Bit 0.. Bit 5) of */
/* Baud rate and SME (Bit 6) of Control reg. */
/* __ */
/* Baud rate prescal er reg. */
R BRP5 BRP4 BRP3 BRP2 BRP1 BRPO */
[* 0 0 0 0 0 0 0 0 */
[* Control reg. */
[* ----- SME ----- —---- meeee meeen oo oo =
[* */
[* */
[* fscl = (BRP + 1)*2*fosc (fosc = 1/ fcrystal) */
/[* fscl = (BRP + 1)*(2 / fcrystal) */
[* */
/[* Bit length : */
/* fbl = TSEGL + TSE&Q + 1 fscl */
/* Baud rate */
/* BR = fecrystal / (2*(BRP +1)*(TS1 + TS2 + 3)) */
[* */
[* Qut Control Register : */
/* ___ */
/* OCTP1 OCTN1 OCP1 OCTPO OCTNO OCPO OCML OCMD */
[* 1 1 1 1 1 0 0 0 */
[* */
/* B LRO, BLR1 OUT_CNTRL, SLEEP_BRP, CLK CTRL */
done = can_hw_init(0x23, 0x42, 0xF8, 0x00, 0x04) ;
done = can_get _status();

/* Receive Objects definitions */
done= can_def_obj (0x10, 8, D REC);
done = can_get_status();
done= can_def_obj (0x20, 8, D REC);
done = can_get _status();
done= can_def_obj (0x30, 8, D REC);
done = can_get _status();

RTX-51/ RTX-251 227

/* Send Objects definitions */
done= can_def_obj (0x11, 8, D_SEND);
done = can_get _status();

done= can_def_obj (0x21, 8, D_SEND);
done = can_get_status();

done= can_def_obj (0x31, 8, D_SEND);
done = can_get_status();

done= can_def_obj (0x12, 8, D_SEND);
done = can_get_status();
done= can_def_obj (0x22, 8, D_SEND);
done = can_get _status();
done= can_def_obj (0x32, 8, D _SEND);
done = can_get_status();

/* Send Request, read answer objekt */
done= can_def_obj (0x13,8,D REC R SEND);
done = can_get_status();

done= can_def_obj (0x23,8,D REC R SEND);
done = can_get_status();

done= can_def_obj (0x33,8,D REC R SEND);
done = can_get _status();

/* Automatic answer to request object definition */
done= can_def_obj (O0xff,8, D SEND R REC);

done = can_get _status();

ts.identifier = OxFF;

for (i=0; i<=7; i++) ts.c_data[i]=0xFF;

done = can_wite(&s);

/* Set the RTX-51 System C ock to 10 nms (12MHz C ock) */
os_set_slice (10000);

/* Create the receive-tasks */
os_create task (REC TASK 1);
os_create task (REC TASK 2);
os_create_task (REC TASK 3);

for (inx=0; inx<=13; inx++){
count[inx] = 0;
}

/* start CAN controller */
done = can_start();

for (;;) {
if (count[1] > 0){
ts.identifier = 0x12;
for (i=0; i<=7; i++) ts.c_data[i]=0x12;
ts.c_data[0] = count[1];
done = can_send(&ts);
done = can_get_status();

done = can_request (0x13);
done = can_get_status();
count[1]--;

228

CAN Support

}

if (count[2] > 0){
ts.identifier = 0x22;
for (i=0; i<=7; i++) ts.c_data[i]=0x22;
ts.c_data[0] = count[2];
done can_send(&ts);
done can_get status();

done = can_request (0x23);
done = can_get _status();
count[2]--;

}

if (count[3] > 0){
ts.identifier = 0x32;
for (i=0; i<=7; i++) ts.c_data[i]=0x32;
ts.c_data[0] = count[3];
done can_send(&ts);
done can_get status();

done = can_request (0x33);
done = can_get _status();

count[3]--;
/***/
/* MAIN PROGRAM */

/***/
void main (void)

{
}

/* END of MODULE HCANDEMO */

os_start_system (SEND_TASK) ;

Compiling and Linking the Program for the Semens 81C90/91:
c51. exe hcandenp. c51
a51. exe hcanconf.a51
ab1. exe rtxconf.a51

BL51 hcandenp. obj, hcanconf. obj, rtxconf. obj, rtxhcan.lib rtx51 ransi ze(256)

Depending on the CAN controller chip and CPU used above shown sequence has to be
modified dightly (see examples contained on distribution disk).

RTX-51/ RTX-251 229

Example 4 (Siemens C515C)

#pragna | arge

#pr agma debug

#pr agma regi st er bank(0)

#pr agma pagel engt h(80) pagew dt h(110)

/***
/**
* METTLER & FUCHS AG CH- 8953 Dietikon, Tel. 01-740 41 00 *
EE I R R S R I S R R R I R O O

EE I S R I S R R I S R R R R O I O

*
* | CANDEMO *
* *
PR R RS S EEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEREEREEEEEEEEEEEEREEEEEEEEEEEE SR
PR R RS S EEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEREEREEEEEEEEEEEEREEEEEEEEEEEEE R
* *
* Purpose: *
* Si npl e denp-program for the RTX-51 CAN-Interface *
* *
* Targetsystem *
* Si emens C515C *
* *
* *
* Fil enane ;| CANDEMO. C51 *
* *
PR R RS S EEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEREEREEEEEEEEEEEEREEEEEEEEEEEEE R
* \ersi onen: *
* *
* - 17. Jun 1997; K. Birsen; Version 0.1 : *
* First Version *
* *

EE S R I S R I S R R R R O

* all rigths reserved by METTLER & FUCHS AG CH8953 DI ETI KON *

***/

/* | MPORTS */

BE=========3
#i ncl ude <rtx51. h> /* RTX-51 function calls */
#i ncl ude "rtxcan. h" /* CAN function calls */

[* DEFI NES */

#def i ne SEND_TASK
#def i ne REC TASK_1
#def i ne REC_TASK_2
#def i ne REC_TASK_3

A WON PR

/* d obal variables */
/* */

/* CAN-send and receive data */
struct can_message _struct xdata ts[14];

230 CAN Support

struct can_nessage_struct xdata tr[14];

unsi gned char i, j, done;
unsi gned int inx;
unsi gned int ident;

unsi gned char count[14];

/***/

/* Test Tasks */
/***/
void rec_task_1 (void) _task_ REC TASK 1 priority_ 1

{

unsi gned char i;
done = can_bind_obj (1);

for (;;) {
/* wait for Message #1 */
done = can_wait(Oxff, &r[1]);
if (done == C_OX){
done = can_get _status();
if (tr[1].identifier == 1){
/* Message 6 ts.datas = datas of received message */
for (i=0; i<=7; i++) ts[6].c_data[i]=tr[1].c_data[i];
count [1] ++;
/* count --> 1. data of Message 9 */
ts[9].c_data[0] = count[1];
/* send Message 9 */
done = can_send(& s[9]);

}
void rec_task_2 (void) _task_ REC TASK 2 priority_1
{

unsi gned char i;

done = can_bi nd_obj (2);

for (;;) {
done = can_wait (Oxff,&r[2]);
if (done == C_OX){
done = can_get _status();
if (tr[2].identifier == 2){
for (i=0; i<=7; i++) ts[7].c_data[i]=tr[2].c_data[i];
count [2] ++;
ts[10].c_data[0] = count[2];
done = can_send(&t s[10]);

}

void rec_task_3 (void) _task_ REC TASK 3 priority_ 1
{

RTX-51/ RTX-251 231

unsi gned char i;
done = can_bi nd_obj (3);

for (;;) {
done = can_wait (Oxff, &r[3]);
if (done == C_OX){
done = can_get _status();
if (tr[3].identifier == 3){
for (i=0; i<=7; i++) ts[8].c_data[i]=tr[3].c_data[i];
count [3] ++;
ts[11].c_data[0] = count[3];
done = can_send(&t s[11]);

voi d send_task (void) _task_SEND TASK
{

/* Start CAN- Task */
if (can_task create() == C OXK) {

/* Init the CAN comm controller for a baud rate */
/* of 1000Kbauds/s (CAN controller with 10 MHz cl ock): */
/* */
/* init for 1000KHz Baud */
[can Bus freq = XTAL /((BRP+1)*(1+(TSEGL+1) +(TSEG2 +1))*/
/* can Bus freq = XTAL /((0 + 1)*(1+(4 +1) +(3 +1))*/
/* can Bus freqg = 10000/ (((1)*(210)) */
/* BTRO BTR1 dunmy, dummy, dumy */
done can_hw_ init (0x80, 0x34, 0x00, 0x00, 0x00);

done can_get _status();

/* Receive Objects definitions */
done= can_def_obj (1,8,D REC);
done = can_get_status();

done= can_def_obj (2,8,D REC);
done = can_get_status();

done= can_def_obj (3,8,D REC);
done = can_get _status();

done= can_def_obj (4,8,D REC);
done = can_get_status();

done= can_def_obj (5, 8,D REC);
done = can_get_status();

/* Send Objects definitions */
done= can_def_obj (6,8, D SEND);
done = can_get _status();

done= can_def_obj (7,8, D SEND);
done = can_get_status();

done= can_def_obj (8,8, D SEND);
done = can_get_status();

232 CAN Support

done= can_def_obj (9,8, D SEND);
done = can_get _status();

done= can_def_obj (10,8, D_SEND);
done = can_get_status();

done= can_def_obj (11,8, D_SEND);
done = can_get _status();

/* |l oad send identification and datas */

for (inx=6; inx<=11; inx++){
ts[inx].identifier = inx;
for (i=0; i<=7; i++) ts[inx].c_data[i]=0;
done = can_wite(& s[inx]);

}

/* Automatic answer to request object definition */
done= can_def_obj (12,8, D SEND R REC);

done = can_get _status();

/* load identification and datas */
ts[12].identifier = 12;

for (i=0; i<=7; i++) ts[12].c_data[i]=0;

done = can_wite(&ts[12]);

done= can_def_obj (13,8, D _SEND);
done= can_def_obj (14,8, D_SEND);

/[* Set the RTX-51 System Cl ock to 10 ms (12MHz C ock) */
os_set_slice (10000);

/* Create the receivetasks */
os_create task (REC TASK 1);
os_create task (REC TASK 2);
os_create_task (REC TASK 3);

for (inx=0; inx<=13; inx++){

count[inx] = O;
}

/* start Can controller */
done = can_start();

for (;;) {
/* if Object 1 received, send Object 6 */
if (count[1] > 0){
ts[6].c_data[0] = count[1];
done = can_send(&t s[6]);
done = can_get _status();
os_ wait (K. TMO 5, 0);
count[1]--;
}
/* if Object 2 received, send Object 7 */
if (count[2] > 0){
ts[7].c_data[0] = count[2];
done = can_send(& s[7]);
done = can_get _status();
os_ wait (K. TMO 5, 0);

RTX-51/RTX-251 233

count[2]--;

}
/* if Object 3 received, send Object 8 */
if (count[3] > 0){

ts[8].c_data[0] = count[3];

done = can_send(&ts[8]);

done = can_get_status();

os_wait (K_TMO 5, 0)

count[3]--;

/***/

/* NMAIN PROGRAM */

/***/
voi d nmin (void)

{

}
/* END of MODULE | CANDEMO */

os_start_system (SEND_TASK) ;

Compiling and L inking the Program for the Siemens C515C:
c51. exe icandenp. c51 defi ne(EXTEND)

a51. exe icanconf. a51

a51. exe rtxconf.a51 SET(proc_type = 21)

BL51 i candenp. obj, i canconf. obj,rtxconf.obj,rtxican.lib rtx51 ransize(256)

Depending on the CAN controller chip and CPU usad above shown sequence has to be
modified dightly (see examples contained on distribution disk).

M eaning of defing(EXTEND) in batch files:
For Intd 82527 and Siemens C515C by using Defing(EXTEND) :
- in Header fileRTXCAN.H can_message struct will be defined as:

struct can_message_struct {

234 CAN Support

unsigned long identifier;
unsigned char c_data[g];
|3

- and the identifiers in those functions will be according to
can_message _struct as ,,unsigned long* defined :

unsigned char can_bind_obj (unsigned long identifier);
unsigned char can_unbind_obj (unsigned long identifier);
unsigned char can_request (unsigned long identifier);
unsigned char can_read (unsigned long identifier,

void xdata *buffer_ptr);

- In addition, all following functions related to last (15") object
will also be as prototype defined:

unsigned char can_def_last_obj (unsigned long last_msg_mask,
unsigned char data_length);
unsigned char can_def_last_obj_ext (unsigned long last_msg_mask,

unsigned char data_length);

unsigned char can read last_obj (void xdata *buffer_ptr);
unsigned char can_bind last_obj (void);
unsigned char can_unbind_last_obj (void);

- In all other CANsthe use of defing(EXTEND) isnot allowed.

RTX-51/RTX-251 235

Files Delivered
All filesarelocated inthe...\CAN sub-directory of the C51/C251 tools directory.
Libraries:

RTXBCAN.LIB Library for the Philips 82C200 CAN controller (Basic
CAN)

RTXFCAN.LIB Library for theIntd 82526 CAN controller (Full CAN)
RTXGCAN.LIB Library for thentd 82527 CAN controller (Full CAN)

RTXHCAN.LIB Library for the Siemens 81C90/91 CAN controller (Full
CAN)

RTXICAN.LIB Library for the Siemens C515C CAN controller (Full CAN)

CANPS92.LIB Library for the Philips 80C592 microcontroller with
integrated CAN interface (Basic CAN)

Configuration files:

BCANCONF.A51 Configuration filefor the Philips 82C200 CAN controller

FCANCONF.A51 Configuration filefor the Intd 82526 CAN controller
GCANCONF.A51 Configuration filefor the Inted 82527 CAN controller

HCANCONF.A51 Configuration filefor the Semens 81C90/91 CAN
controller

ICANCONF.A51 Configuration filefor the Siemens C515C CAN controller
CCONF592.A51 Configuration filefor the Philips 80C592.

INCLUDE file:

236

CAN Support

RTXCAN.H
Examplefiles:
BCANDEMO.C51
BCANDEMO.BAT
BCANS92.BAT
GCANDEMO.C51
GCANDEMO.BAT

HCANDEMO.C51

ICANDEMO.C51

HCANDEMO.BAT

Header filefor KEIL C51/C251 applications

C51/C251 examplefor the Philips CAN controller
Compileand link the example for the 80C200
Compile and link the example for the 80C592
C51/C251 examplefor theintd 82527 CAN controller
Compileand link the example for theintd 82527

C51/C251 examplefor the Siemens 81C90/91 CAN
controller

C51/C251 examplefor the Siemens C515C CAN controller

Compileand link the example for the Siemens 81C90/91

RTX-51/RTX-251 237

Chapter 7. BITBUS Support (RTX-51)

PREFACE

This chapter forms the user's guide for the RTX-51 BITBUS Interface software. The
RTXBITBUS/5L Interface dlows a RTX-51 system to communicate with a BITBUS
network.

Sncethis software is based on a 8051 family processor it is not available for the
RTX-251.

This chapter is sub-divided into four sub-chapters outlined below:
"Introduction” provides a brief overview on RTXBITBUS/51.

"BITBUS Standard" describes the relation between the RTXBITBUS/51 software and
the Intd BITBUS standard.

"Application Interface" contains detailed informeation about the application interface.

"Files Ddivered” lists al files on the distribution disk.

Introduction

The RTXBITBUS/51 task supports BITBUS communication of Intel 8044/8344
microprocessor-based boards. Full compatibility on the layers "data link protocol” and
"message protocol” ensures communication with stations containing the Inted BEM
processor (BEM: BITBUS Enhanced Microcontraller). The BITBUS communication
software runs as a task under the RTX-51 Real-Time Executive. Two versions of the
communication task exist: RTX-51/BBS for BITBUS dave dations and RTX-
51/BBM for BITBUS master stations.

This user's guide assumes that the reader is familiar with the BITBUS specifications,
with the 8044 microprocessor and with the RTX-51 Real-Time Executive

238 BITBUS Support

For detailed information on the BITBUS specification, the 8044 microprocessor and
the BEM microprocessor see

= Distributed Control Modules Databook
(Intel, USA, order no.: 230973-004)

m TheBITBUS Interconnect Serial Control Bus Specification
(Intd, USA, order no.: 280645-001)

BITBUS isasubset of SDLC (Seria Data Link Contral), a serial communication
standard defined by IBM. Detailed knowledge of SDLC is not required. Consult
"Synchronous Data Link Control: Concepts' (IBM document GA27-3093-3) for more
information concerning SDLC.

Abbreviations

Abbreviations used in this document;

BITBUS Seria communication standard based on SDLC; defined by
Intel

SDLC Synchronous Data Link Contral.
Standard pratocol for seria data-communication defined by
IBM

BBS/BBM

BITBUS Slave/

BITBUSMagster An SDLC network always contains one BITBUS master
station and one or more BITBUS dave stations

BBS TASK Driver task for the BITBUS dave communication

BBM_TASK Driver task for the BITBUS master communication

RTX-51 Real-Time Multitasking Executive for processors of the 8051
family

RTX-51/RTX-251 239

Concept

The BITBUS communication software runs as afast task (register bank 3, priority 3
and task number 0) under the RTX-51 Real-Time Executive It handles the messages
received from the BITBUS network as wel as the messages to transfer as requested by
the application.

It requires an application task which reads the recaived BITBUS messages from the
buffer and handles the flags and signals asrequired. Therecaver application task is
usually configured as a standard task. The messages to be sent may be set up ether by
the same application task or by another one To ensurethat no CPU timeis required
whilewaiting for messages, the application task and the communication task function
with the RTX-51 system call “os_wait”.

Variables

To understand the concept, the user must be familiar with buffers and flags used by the
application and the communication software.

bbs rx_buf / bbm_rx_buf: Buffer for received BITBUS messages

= Namemust not be changed

= Structure definition see section " Structur e of the M essage Buffer" (page
244)

m Declared by the BITBUS header file

tx_buffer: Buffer for BITBUS messagesto betransferred
= Arbitrary name, user-sdectable
= Structure definition must conform to section " Structur e of the M essage

Buffer" (page 244)
m Declared by the application software

bbs en sig to drv/

bbm _en sig to drv: Flag to enable/disable signal to BITBUS communication task

Meaning of name ENable SIGnal TO DRiVer
Declared by the BITBUS header file
Configured by the BITBUS communication task
Must not be changed by the application software

240

BITBUS Support

m Must betested by the application software after every read of bbs rx_buf /
bbm rx_buf and if set, a signal must be sent to the BITBUS communication task

bbs en sig to app/
bbm _en sig to_app: Flag to enable/disable signal to receiver application task

Meaning of name: ENable SIGnal TO APPlication

Declared by the BITBUS header file

Configured by the application software

Not changed by the BITBUS communication software

Tested by the BITBUS communication software after every transfer of a message
ontheBITBUS and if s&t, asignal is sent to the application task

m Recommendation: Set to 1 at initialisation and never changeit; wait for BITBUS
messages by means of ,,0s wait" for asignal.

bbs rx_tid/ bbm_rx_tid: Task identification number of receiver application task

m Declared by the BITBUS header file
= L oaded by application software after starting up the receiver application task

m Usad by the BITBUS communication task to send asignal to thistask when a
BITBUS message has arrived

BBS_TID /BBM_TID: Task identification number of BITBUS communication task

m Declared by the BITBUS header file

= Usad by the application software to send a signdl to this task when the message has
been read from the buffer bbs rx_buf / bbm rx_buf

The Figure 20 illustrates the context of the different variables.
BITBUS Communication Task

The BITBUS communication task waits for one of the following events by means of an
“0s wait” systemcall:

m Messagein mailbox 7:
The application software prepares messages that it wants to transfer on the
BITBUS and writes the pointer of the message to mailbox 7. Whenthe BITBUS
communication task receves the pointer in mailbox 7, it beginsto transfer the
message on the BITBUS.

RTX-51/RTX-251 241

m BITBUS messagerecaved (serid interrupt):
When the BITBUS communication task receives a BITBUS message, it writesthe
message into the buffer bbs_rx_buf/bbm _rx_buf and checks the flag
bbs en sig to _app/ bbm _en g to app. If thisflagis s, it sendsasignal to the
receiver application task identified by bbs_rx_tid/ bbm_rx_tid.

\—— l
BBx_RX_BUF
I MBX 7
RN
1L
x TX_BUFFER
BBX_ \N—— Appli-
Task BBx_EN_SIG_TO_DRV cation
Signal BBx_TID Task
Signal BBx_RX_TID /
_/\/

BBx EN_SIG_TO_APP

Figure 20: BITBUS Communication Concept

= Sgna:
If the BITBUS communication task has more than one messageto passto the
receiver application task, it setstheflag bbs en sig to drv/ bbm en sig to drv.
After reading a message from the buffer, the recaiver application task checks this
flag and, if s&t, sends a signdl to the BITBUS communication task identified by

242 BITBUS Support

BBS TID/BBM_TID. Thisinformsthe BITBUS communication task that the
buffer isfree and that the next message may bewritten into the buffer.

Application Task

The application task waits for the following event by means of an “os_wait” system
cal:

= Sgna:
Therecever application task waitsfor asignal. Thissignal is sent by the BITBUS
communication task only if theflag bbs en sig to app/ bbs en sig to_app is s&t!
Upon the occurrence of the signal, the recaiver application task reads the message
from the buffer.

Requirements
The BITBUS dave communication task requires the following:

12 bytes stack

1 byteinternal RAM for bit variables
Approximatdy 37 bytes external RAM
Approximatdy 1.2 Kbytes code

Register bank 3 (task number O, priority 3)

The BITBUS master communication task requires the following:

12 bytes stack

1 byteinternal RAM for bit variables
Approximatdy 4.3 Kbytes external RAM
Approximatdy 2.7 Kbytes code

Register bank 3 (task number O, priority 3)

RTX-51/RTX-251 243

BITBUS Standard

In 1984 Intd defined a standard for afidd bus called BITBUS. 1n the document The
BITBUS Interconnect Serial Control Bus Specification, the standard is defined within
thefollowing groups:

Electrical interface

Data link protocol

M essage protocol

Remote access and control
Mechanical

Compatibility to the BITBUS standard requires satisfaction of the following minimum
requirements:

(A) Hardware "Electrical”

(B) Software "Data Link Protocol”
"M essage Protocol”

The RTX-51/BBx BITBUS communication software satisfies the minimum
requirements of (B) and may be run with any hardware containing a Intel 8044
processor and satisfying the requirements of (A).

The BITBUS standard uses a subset of SDLC as a basefor thelayer "datalink
protocol”.

Application Interface

This chapter describes the interface between the application and the BITBUS driver
task. Theinterfacefor amaster and a dave Sation are basically the same differences
are mentioned in the document.

The BITBUS standard header is supported, which contains five bytes and a data fidd
containing maximum 13 bytes.

Release 2 of BITBUSwith atotal message size of 54 bytesis not supported, asthis
would requiretoo much internal RAM for data buffering. Version 1 with 18-byte
messages requires 2 * 18 bytes of internal RAM; 18 bytes for the transmit buffer and

244 BITBUS Support

18 bytesfor the receive buffer. Version 2 with 54 bytes would reguire 2 * 54 bytes of
internal RAM. Thiswould provideinsufficient RAM for the application.

Sinceall Intd BEM processors with rdease 2 automeatically boot with the small
message size, thereis no problem to interface with this type of board, aslong asit is not
switched to the larger message size

Structure of the Message Buffer

The receive- and the transmit-buffers are used for interfacing the application to the
communication task. These two buffers have the same structure and are located in the
external RAM.

o
<

—

]

PtrMessage --> BUFFER_FULL
RES

LENGTH
ROUTE

NODE

TASKS
CMD_RSP

00 N OO O~ W NP

PARMS (n Bytes)
N =[0..13]

n+7

Fidd Description

BUFFER_FULL Issetto"1" (TRUE) when data has been loaded into the
buffer.

Isset to"0" (FALSE), when data has been read from the
buffer.

RES Reserved

LENGTH Number of bytes (length) in the buffer.
Itsvaueis 7+n, where nis the number of bytesin thefidd
PARMS. Therangeof LENGTH is7to 20. No bytesinthe
data fidd PARM S will result in alength of 7, sincethe bytes 1

RTX-51/RTX-251 245

to 7 areadways present. The maximum length of 20 resultsif
transmitting the maximum of 13 data bytes.

ROUTE See BITBUS specification.
ROUTE consists of thefollowing bits :
vt [se [pe [tr [REserveD

MT : Message Type

SE : Source Extension

DE : Destination Extension
TR : Track

For details, seeIntd BITBUS documentation !

Not used by RTX-51/BBY; it transmits/receives ROUTE
without changing it.

CAUTION:

To befully compatible with the BITBUS standard, the

application software of a dave station must always:

- Set hit 7 (MT) (for response)

- Clear bit 4 (TR)

- Read the other bits from "order" and write them unchanged
into "response’

NODE Node contains the address of the sdected dave station. The
master application software determines the daveto be
addressad by writing the corresponding addressinto NODE.
NODE is not used by the dave application software.

TASKS See BITBUS specification.
Not used and not changed by the BITBUS communication
software. Can be used by the application task.

CMD_RSP Contains the command or the response code.
Usudly used by the application software. Only upon the
occurrence of an "irrecoverable protocol error” during the
transmission of acommand, thisfiddisset to
E_PROTOCOL_ERROR by the BITBUS communication

246 BITBUS Support

software and returned as a response.

Only bytes 3..(n+7) aretransferred on the BITBUS; bytes 1
and 2 are usad for local data contral.

The type declaration of a message buffer is contained in the
BITBUS header file

typedef struct {
unsigned char buffer_full;

unsigned char res;
unsigned char length;
unsigned char route;
unsigned char node;
unsigned char tasks;
unsigned char cnd_rsp;
unsigned char parmg[13];
} struct_msg_buf;

Transfer of Messages

Datato transfer are passad to the BITBUS communication task by writing the start
address of the message buffer into mailbox 7. The message buffers have to be declared
in the application software.

Data transfer procedure:

1. Preparedatain thetransmit message buffer located in external RAM. The
following fidds must beinitialised:

- LENGTH according to the number of bytesin the message (7 + number of
bytesin files PARMS)

- BUFFER FULL =1

- |f gation is amaster: write dave address into NODE

- All the other fidds requested by the "M essage Protocol” (ROUTE, NODE,
TASKS, CMD_RSP) haveto be st according to the BITBUS standard.

2. Write gtart address of message buffer into mailbox 7. As soon asthe BITBUS
communication task has sent the message successfully (i.e. recaiving station

RTX-51/RTX-251 247

confirmed the recapt of the message), it clearstheflag BUFFER_FULL. This
rdeases the message buffer for the next message.

If the sending station is the master and if it could not transmit the message
successfully to the requested dave station, the messageis returned as an error
message to the application through the recaiver buffer BBx_RX_BUF. The
contents of the error messageis the same as the transfer message, except thefidd
CMD_RSPissgt to E_ PROTOCOL_ERROR. Whenthe BITBUS task has
written the error message into BBx_RX_BUF, it clears BUFFER_FULL (marking
the transmission buffer empty).

Receipt of Messages

The BITBUS communication task requires an application task which reads the received
messages. Thistask istriggered when amessageisready. Received messages are
written into the buffer bbs_rx_buf/bbm_rx_buf which is declared in external RAM by
the BITBUS communication task. A maximum of two received messages may be
pending at any time, onein bbs_rx_buf/bbm _rx_buf and onein theinternal buffer of
the BITBUS communication task.

If the messages are nat read from the buffer bbs_rx_buf/bbm _rx_buf, aSDLC
protocol message "buffer not ready” is sent to the transmitting station. The transmitter
will not send any data until the receiver is ready again.

Receving procedure:

1. When the BITBUS communication task receives a message, it performsthe
following:

- Writes the message into the message buffer bbs_rx_buf/bbm _rx_buf.

- Sasthefidd BUFFER_FULL = 1 (buffer occupied).

- Sendsasignd to the recaving application task, identified by
bbs rx_tid/bbm_rx_tid.

2. Upon recept of the signal the receiving application task reads the message from the
buffer bbs rx_buf/bbm rx_buf. Aftewards, it sasthefidd BUFFER _FULL =0
(buffer free).

248 BITBUS Support

3. If theflagbbs en sig to drv/bbm en g to drvis sg, therecaiving application
task sends a signal to the BITBUS communication task. The BITBUS
communication task then recognises that the buffer is empty and ready for the next

message

Initialisation

Thefollowing parameters are declared by the BITBUS communication task as
variables and must beinitialised by the application software.

Parameter sused by master and dave stations:

= bbs rx_tid/bbm rx_tid:
Task identification of the receiving application task.

m bbs konfig smd/bbm_konfig_smd:
Hardware parameters. The format correspondsto the hardware register SMD of
the8044. All parameters except NFCS, NB and LOOP may be set according to
the specific application (for details see 8044 manual).

m bbs en sg to app/bbm en sg to app:
Flag to contral the sending of a signal to task bbs rx_tid/bbm rx_tidwhena
message has been received. If asignal hasto be sent, then this flag can beinitialised
to 1 and does not have to be changed during operation.

Parameter used only by a dave gation:

m bbs station addr:
Thisisthe address of the dave within the BITBUS network. A dave address must
be unique and may bein therange of 1 to 250. 0 is used by the master. 251 to 255
arereserved by the Intd BITBUS specification.

Parameter used only by amaster station:

= bbm timeout:
This is the maximum time to wait for a response frame from the dave after aframe
has been sent. The number in “bbm_timeout” isin units of the RTX-51 system
tick. Standard value according to the BITBUS specification is 10 ms (definea
RTX-51 system tick of 10 msand a TIMEOUT of 1).

RTX-51/RTX-251 249

Theinitialisation has to be performed prior starting the BITBUS communication task.
Therest of the BITBUS communication variables areinitialised by the communication
task itsdlf.

Application Examples
Example 1: I nitialisation

m |llustrates theinitialisation for a dave BITBUS communication
= Theinitialisation must be executed before messages are sent or received.

#i ncl ude <rtx51. h>
#i ncl ude "bbs_rtx. h"

void init_exanple (void) _task_ INT

{
/* Start the receiving application task and wite ist */
/* task identification into the variable bbs_rx_tid */
os_create_task (REC_TASK);
bbs_rx_tid = REC_TASK; /* task-nunber of receiving task */
/* Set node-address (station address) of this BITBUS sl ave */
bbs_station_addr = 3;
/* Set the configuration: */
/* (See 8044 docunentati on) */
/* For BITBUS conpatibility NRZI nust be set, PFS should be set */
/* For the different clock nodes use the follow ng val ues: */
/* 0x14 : Externally clocked, 0-2.4 Mits/sec */
/* 0x54 : Self clocked, tinmer overflow 244-52,4 Kbits/sec */
/* 0x94 : Self clocked, external 16x, 0-375 Kbits/sec */
/* 0xB4 : Self clocked, external 32x, 0-187.5 Kbits/sec */
/* OxD4 : Self clocked, internal fixed, 375 Kbits/sec */
/* OxF4 : Self clocked, internal fixed, 187.5 Kbits/sec */
/* Al data rates are based on a 12 MHz crystal frequenzy */
bbs_konfig_snd = 0xD4;
/* Set flag bbs_en_sig_to_app to 1 (upon recei pt of a nmessage, */
/* the BITBUS conmmuni cati on task sends a signal to the receiving */
/* application task identified by bbs_rx_tid.*/
bbs_en_sig_to_app = 1;
/* Start BI TBUS communication task (for master use BBM Tl D) */
os_create_task (BBS_TID);

}

Example 2: Receipt of M essages by a Save

250 BITBUS Support

= Inexample 2, thereceiving application task is a standard task.

#i ncl ude <rtx51. h>
#i ncl ude "bbs_rtx. h"

#def i ne TRUE 1
#def i ne FALSE 0

void rec_exanple (void) _task_ REC TASK _priority_ 1
{

xdat a unsi gned char i;
xdat a unsi gned char conmand;
xdat a unsi gned char data [13];

/* Wait for a nessage (no tineout specified, endless wait) */
os_wait (K _SIG Oxff, 0);
/* Test if message is in the buffer */
if (bbs_rx_buf.buffer_full == TRUE))
{

/* Read / copy nessage */

command = bbs_rx_buf.cnd_rsp;

if (bbs_rx_buf.length > 7) {

for (i=0; i<=bbs_rx_buf.length-8; i++) {
datal[i] = bbs_rx_buf.parns[i];

}
/* Set flag for buffer enpty */
bbs_rx_buf . buffer_full = FALSE;
/* If required, then send a signal to the Bl TBUS comm task */
if (bs_en_sig_to_drv) {
rtx_send_signal (BBS_TID);
}

}

Example 3: Transfer of Messages by a Slave

struct _nmsg_buf xdata tx_buffer;

/* Prepare data to send. */
/* Exanple wi th commmand/response 30H and one data byte with the */
/* value 67H. If the buffer tx_buffer was used before, nmake sure */
/* the buffer is enpty and avail abl e (see exanple 4) */
tx_buffer.buffer_full = TRUE;

tx_buffer.length = 8;

tx_buffer.route = 0x90;

t x_buf fer.node = bbs_station_address;
tx_buffer.tasks = 0;
tx_buffer.cnmd_rsp = 0x30;

t x_buf fer.parnms[0] = 0x67;

/* transfer data to the BlI TBUS comuni cati on task */

RTX-51/RTX-251 251

os_send_nessage (7, & x_buffer, Oxff);

Example4: Test if Transmission Buffer is Empty

it (tx_buffer.buffer_full == FALSE)
{
/* Buffer is enpty. */
/* De-allocate buffer * [
/* or &/
/* wite new data into transfer buffer */

Remote Access and Control Functions (RAC)

The BITBUS standard defines the Remote Access and Control (RAC) commands as
optional.

Inthe current version of the RTX-51 BITBUS communication software, these are nat
implemented. Only the RAC command O (reset dave) isimplemented inthe dave
communication task. All other RAC commands are sent to the application and may be
implemented by the application task in an easy manner.

Outstanding Responses

The message pratocol defines that no more than seven commands from the master to a
specific dave are outstanding (i.e without response). To fulfil this requirement, the
dave software must guarantee that the eighth command message will not be accepted.
The RTXBITBUS/51 communication task fulfills this requirement. Thedave
communication task sends a maximum of six command messages to the application.
The seventh command message remainsin the SIU recaiver buffer which guarantees
that no more messages from the master are accepted. The seventh command message
istransferred to the application immediatdy, as soon as a response has been sent and
after the master has confirmed this response.

252 BITBUS Support

Error Handling

DataLink Error

Error handling in the layer "data link protocol” is defined by SDLC and the BITBUS
specifications and is implemented according to these specifications.

M essage Protocol Error
Thefollowing error handling isimplemented in the dave driver:

= Upon the occurrence of a sequence error in areceived command message, this
message is returned to the master with response code E_PROTOCOL_ERROR.

= Uponawrong length parameter (fidd LENGTH does not correspond to the number
of transmitted bytes), the received command message is returned to the master with
response code E_PROTOCOL_ERROR.

m Upontherecept of aninvalid I-fidd (less than five bytes or greater than 18 bytes),
the recaived command message is returned to the master with response code
E_PROTOCOL_ERROR.

m |f the application sets up a message with an invalid valuein the LENGTH fidd
(greater than 20), the communication task does not transfer the message and the
fidd BUFFER_FULL remains unchanged because the message has not been
transmitted.

The master driver does not transfer messages with aninvalid valuein the LENGTH or
NODE fidd. Themessageis returned to the application task with the response code
E_PROTOCOL_ERROR.

Files Delivered

All filesarelocated inthe...\BITBUS sub-directory of the C51/C251 tools directory.
Libraries:
BBM20.LIB Library with BITBUS master task

BBS20.LIB Library with BITBUS davetask

RTX-51/RTX-251 253

PLM51.LIB Dummy library for thelinker.
The BITBUS communication task iswritten in PL/M-51,
but fully compatibleto the KEIL C-51.

LibrariesBBM20.LIB and BBS20.LIB contain al the
references required for linking.

However the linker detects the codeinsdethe BITBUS
library as being generated by the PL/M-51 compiler and
therefore searches for thefile PLM51.LIB in the current
C51LIB-directory.

If no PLM51.LIB fileiscontained in the C51L 1B
directory, thedummy library file PLM51.L 1B must be
copied from the BITBUS disk to the current C51L 1B
directory.

All C51 librariesresidein the current C51LIB directory.

INCLUDE files;

BBM_RTX.H C-51 header filewith the ddfinitions for the BITBUS master
communication task

BBS RTX.H C-51 header filewith the definitions for the BITBUS dave
communication task

Examplefiles:

BBM_DEMO.C51 Demo program for the use of the BITBUS master task
BBS DEMO.C51 Demo program for the use of the BITBUS davetask

BBM_DEMO.BAT Compileand link BBM_DEMO.C51

BBS DEMO.BAT Compileandlink BBS DEMO.C51
Sour ce codefiles:

RTX_PLM.DCL RTX-51 system call declarations for the PL/M-51
language.

254

BITBUS Support

BBS_TASK.P51

BBS_UTIL.A51

MAKEBBS.BAT

BBM_TASK.P51

MAKEBBM.BAT

Source code of the BITBUS slave task written in PL/M-
51 language.

Source code of the BITBUS slave task utilities written in
KEIL 8051 assembler language.

Batch file to generate the library BBS20.LIB and the
dummy library PLM51.LIB.

Source code of the BITBUS master task written in
PL/M-51 language.

Batch file to generate the library BBM20.L1B and the
dummy library PLM51.LIB.

RTX-51/RTX-251 255

Chapter 8. Application Example

Overview

This chapter provides a brief overview stating the major points on how to generate
a RTX-51/251 application:

1. Implement the application using the RTX-51/251 system functions (defined
in INCLUDE file RTX51.H/RTX251.H).

2. Compiletheindividual files (like for an application without RTX-51/251).

3. Link the application with the BL51/L251 Linker and option
RTX51/RTX251:

RTX-51:

BL51 input-list RTX51

RTX-251:

L251 input-list RTX251

Using the option RTX51/RTX251, library RTX51.LIB/RTX251x.LIB (x =
S or B for source/binary mode) is automatically linked to the application.
Special specifications to locate the RTX-51/251 segments are not necessary.
These can, however, beused if desired.

4. The application can be tested with standard debugging tools (example:
dScope-51/251 source level debugger).

The integrated development environment mVision-51/251 may be used to automate
these steps.

Example Program TRAFFIC2

The example program TRAFFIC2 is derived from the example program
TRAFFIC written for RTX-51 TINY.
This example shows how easy a complex task can be solved, using RTX-51/251.

256 Glossary

It isincluded on the distribution disk together with all files required to build and
run the application under dScope-51/251. This example was written for
demonstration purposes and may require re-working to be applied to the real
world.

Thelamp outputs and all inputs are defined in such away an MCB-517A
evaluation board could be easily used to build a demonstration hardware.

The example shown is written for RTX-51 running on a MCB-517A evaluation
board. Running it on a MCB251SB under RTX-251 requires minor
modifications (not shown here in detail). On the RTX-251 distribution disk you
can find a separate version for RTX-251 ready to run.

Principle of Operation

TRAFFIC2 is atime-controlled traffic light controller. During a user-defined
clock timeinterval, the traffic light is operating. Outside thistimeinterval, the
yellow light flashes.

The traffic flow of a simple crossing is controlled based upon a timing scheme.
Pedestrians have the possibility to reduce the wait time until the ‘walk’ light goes
on by pressing a request button. On the other side approaching cars are detected
by sensors, thus shortening the red phase if thereis no crossing traffic.

The Figure 21 shows the numbering of thetraffic directions, as they are used
throughout this program. Thelarge arrows show car traffic and the small arrows
show pedestrian traffic.

Thereis arepeated control cycle consisting of a total of eight different phases.
Thelength of the RED and GREEN phases may be shortened by the request
buttons and/or car detectors.

RTX-51/RTX-251 257

N

2

Figure 21: TRAFFIC2 Direction Numbering Scheme

Example 1: if a pedestrian presses the request button to cross direction no. 2, then
the GREEN phase of direction no. 1 isterminated prematurely. Because of this
the pedestrian gets a WALK light as soon as possible.

Example 2: a car approaches on direction no 1. When it is detected and no
pedestrian request or car detect event on direction 1 arises, then the RED phase on
direction 1 is terminated prematurely. By thisthe arriving car gets a GREEN light
as soon as possible.

The Figure 22 illustrates the eight different control phases.

258 Glossary
1 2 3 4 5 6 7 8
| | | | | | | | |
I red+ I !
yellow green green yellow red red red red
stop walk stop
pedestrian button 2 car detector 1
1 2 3 4 5 6 7 8
| | | | | | | | |
| 1 1
red red red red red+ green green yellow
yellow
stop walk stop
car detector 2 pedestrian button 1

Figure 22: TRAFFIC2 Control Phases

Traffic Light Controller Commands

Y ou can communicate with the traffic light controller via the serial port interface
of the 8051. You can usethe serial window of dScope-51 to test the traffic light
controller commands.

The serial commands that are available are listed in the following table. These
commands are composed of ASCI|I text characters. All commands must be
terminated with a carriage return.

Command Serial Text Description

Display D Display clock, start, and ending times.

Time T hh:mm:ss Set the current time in 24-hour format.

Start S hh:mm:ss Set the starting time in 24-hour format. The traffic light

controller operates normally between the start and end
times. Outside these times, the yellow light flashes.

End E hh:mm:ss Set the ending time in 24-hour format.

Software

The TRAFFIC2 application is composed of three files that can be found in the
....\RTX sub-directory of the C51/C251 tools directory.

RTX-51/RTX-251

259

TRAFFIC2.C contains the traffic light controller program which is divided

SERIAL.C

GETLINE.C

into the following tasks:

Task O Initialize: initializes the serial interface and starts all
other tasks. Task O ddetesitsdf sinceinitialization is only
needed once.

Task 1 Command: is the command processor for thetraffic
light controller. Thistask controls and processes serial
commands received.

Task 2 Clock: controls the time clock.

Task 3 Blinking: flashes the yelow light when the clock timeis
outside the active time range (between the start and end times).

Task 4 Lights: controls the traffic light phases while the clock
timeisin the active range (between the start and end times).

Task 5 Button: reads the pedestrian push button 1 and 2
depending on the active control phase. It signals the Lights
task.

Task 6 Quit: checks for an ESC character in the serial stream.
If oneis encountered, this task terminates a previously specified
display command.

Task 7 Detect1: waits for cars approaching from direction 1.
It signals the Lights task.

Task 8 Detect2: waits for cars approaching from direction 2.
It signals the Lights task.

implements an interrupt driver serial interface. Thisfile
contains the functions putchar and getkey. The high-leve 1/0
functions printf and getline call these basic 1/0O routines. The
traffic light application will operate without using interrupt
driven serial 1/0, but will not perform as well.

is the command line editor for characters received from the
serial port.

260

Glossary

TRAFFIC2.C, SERIAL.C and GETLINE.C arelisted below.

TRAFFIC2.C

/***/

/* */
[* TRAFFIC2.C. Traffic Light Controller using RTX-51 */
/* */
[* 17- NOV-1994 /| EG */
/***/
/* Derived from TRAFFIC. C (originally witten for RTX tiny). */
/* Shows advanced features of the full version of RTX-51. */

/***/

#pragma CODE DEBUG OBJECTEXTEND

code char
"\
"xxkxxxxk TRAFF|I C LI GHT CONTROLLER using C51 and RTX-51 **x****x4\n"
"| This programis a sinmple Traffic Light Controller. Between |[\n"
start tine and end tinme the systemcontrols a traffic light |\n"
with pedestrian self-service and approaching car detection. |\n"
Qutside of this tinme range the yellow caution lanp is blink-|\n"

menu[]

I
I
I
"| ing. |\ n"
"+ command -+ syntax ----- + function ----------c-omi +\ n"
"| Display | D | display tines |\ n"
"| Time | T hh:mmss | set clock tine [\n"
"| Start | S hh:mmss | set start tine [\n"
"| End | Ehh:mmss | set end tine |\ n"
T cccoc===2 Femmmmeeaaaaas e +\n";
#i ncl ude <reg517. h> /* special function registers 80517 */
#i ncl ude <rtx51. h> * RTX-51 functions & defines */
#i ncl ude <stdi o. h> * standard 1/O .h-file */
#i ncl ude <ctype. h> * character functions */
#i ncl ude <string. h> * string and nmenory functions */
extern getline (char idata *, char); /* external function: input line */
extern serial _init (); /* external function: init serial T */
#define INIT 0 /* task nunmber of task: init */
#defi ne COWWAND 1 * task nunber of task: conmand */
#def i ne CLOCK 2 * task nunber of task: clock */
#define BLINKING 3 * task number of task: blinking */
#define LI GHTS 4 * task number of task: signal */
#defi ne KEYREAD 5 * task nunmber of task: keyread */
#define GET_ESC 6 * task number of task: get_escape */
#define CAR DET1 7 * task nunber of task: car_detl */
#define CAR DET2 8 * task nunber of task: car_det2 */
struct time { /* structure of the tine record */
unsi gned char hour; /* hour */
unsi gned char mn; * mnute */
unsi gned char sec; * second */
I
struct time ctime = { 12, 0, O }; /* storage for clock tinme val ues */

RTX-51/ RTX-251

261

struct time start = { 7, 30, O }; /* storage for start tine val ues */
struct time end ={ 18, 30, O }; /* storage for end ti me val ues */
unsi gned char keypressedil; /* status flag: pedestrian button 1 */
unsi gned char keypressed?2; /* status flag: pedestrian button 2 */
unsi gned char cardetectedl; /* status flag: car detector 1 */
unsi gned char cardetected?2; /* status flag: car detector 2 */
unsi gned char phaseno; /* Traffic control phase nunber */

/* Direction 1 */
shit red___ 1 = P172; /* 1/OPin: red | anp out put */
shit yellowl = P171; /* 1/O Pin: vyellowlanp output */
shit green_1 = P170; /* 1/O Pin: green |anp output */
shit stop__1 = P173; /* 1/O Pin: stop | anp out put */
shit walk__1 = P174; /* 1/O Pin: walk | anp out put */
shit keyl = P175; /* 1/O Pin: self-service key input */
shit red___ 2 = P472; /* 1/OPin: red | anp out put */
shit yellow2 = P471; * | /O Pin: yellow|lanp output */
shit green_2 = P470; I/O Pin: green |anp output */
shit stop__2 = P473; I/O Pin: stop | anp out put */
shit walk__2 = P474; I/0O Pin: walk | anp out put */
shit key2 = P475; I/O Pin: self-service key input */
i dat a char inline[16]; /* storage for command input |ine */

/***/

/* Task O "init': Initialize */
/***/
void init (void) _task_ INIT { /* program execution starts here */
serial _init (); /* initialize the serial interface */
os_set _slice (10000); /* set the systemtinebase to 10ns */
os_create_task (CLOCK); /* start clock task */
os_create_task (COMVAND); /* start command task */
os_create_task (LIGHTS); /* start lights task */
os_create_task (KEYREAD); /* start keyread task */
os_create_task (CAR_DET1); /* start cardetl task */
os_create_task (CAR_DET2); /* start cardet2 task */
os_del ete_task (INT); /* stop init task (no |Ionger needed) */

}

bit display_time = 0; /* flag: cnd state display_tine */

/***/

/* Task 2 'clock' */

/***/

void clock (void) _task_ CLOCK _priority_ 1 {

while (1) { /* clock is an endl ess | oop */
if (++ctine.sec == 60) { /* cal cul ate the second */
ctime.sec = 0;
if (++ctime.mn == 60) { /* calculate the minute */
ctine.mn = 0;
if (++ctinme.hour == 24) {/* calculate the hour */
ctine. hour = 0;
}
}
}
if (display_tine) { /* if command_status == display_time */
os_send_signal (COWAND); /* signal to 'command': tine changed */

262 Glossary

}
os_wait (K_TMO, 100, 0); /* wait for 1 second */
}
}

struct time rtine; /* tenporary storage for entry tine */

/***/

/* readtime: convert line input to tine values & store in rtime */
/***/

bit readtinme (char idata *buffer) {

unsi gned char args; /* nunber of argunents */
rtine.sec = 0; /* preset second */
args = sscanf (buffer, "%bd: %d: %d", /* scan input |ine for */

&rtime. hour, /* hour, mnute and second */

&time.mn,
&rtine.sec);

if (rtime.hour > 23 || rtine.min > 59 || /* check for valid inputs */
rtine.sec > 59 || args < 2 || args == EOF) {
printf ("\n*** ERROR | NVALID TI ME FORVAT\ n");
return (0);
return (1);
}
#define ESC O0x1B /* ESCAPE character code */
bi t escape; /* flag: mark ESC character entered */

/***/

/* Task 6 'get_escape': check if ESC (escape char) was entered */

/***/

voi d get_escape (void) _task_ GET_ESC ({

while (1) { /* endl ess | oop */
if (_getkey () == ESC) escape = 1; /* set flag if ESC entered */
if (escape) { /* if esc flag send signal */
os_send_si gnal (COMVAND) ; /* to task ' conmand' */
}
}
}
/***/
/* Task 1 'command': conmand processor */

/***/

void command (void) _task_ COMVAND {
unsi gned char i

printf (nmenu); /* display command nenu */
while (1) { /* endl ess | oop */
printf ("\nCommand: "); /* display pronpt */
getline (& nline, sizeof (inline)); /* get command |ine input */
for (i =0; inline[i] !'=0; i++) { /* convert to uppercase */
inline[i] = toupper(inline[i]);
}
for (i = 0; inline[i] ==""; i++); /* skip bl anks */

switch (inline[i]) { proceed to cnd function */
case 'D: * Display Time Comrand */

~ —
*

RTX-51/ RTX-251 263

printf ("Start Time: %2bd: ¥%92bd: ¥92bd "
"End Tine: %92bd: ¥92bd: %©2bd\ n",
start. hour, start.mn, start.sec,

end. hour, end. nm n, end. sec) ;
printf (" type ESC to abort\r");
os_create_task (GET_ESC); /* ESC check in display |oop */
escape = 0; /* clear escape flag */
display_time = 1; /* set display time flag */
os_cl ear _si gnal (COMVAND) ; /* cl ear pending signals */
while (!escape) ({ /* while no ESC entered */

printf ("Clock Tine: %92bd: %92bd: ¥©2bd\r", /* display time */
ctinme.hour, ctime.mn, ctine.sec);

os_wait (K SIG 0, 0); /* wait for tine change/ ESC */
}
os_del ete_task (GET_ESC); /* ESC check not | onger needd*/
display_time = 0; /* clear display tine flag */
printf ("\n\n");
br eak;
case 'T': /* Set Tinme Command */
if (readtime (& nline[i+1])) { /* read tine input and */
ctinme. hour = rtine. hour; /* store in 'ctine' */
ctime.min = rtime. mn;
ctine.sec = rtine. sec;
}
br eak;
case 'E': /* Set End Time Conmand */
if (readtime (& nline[i+1])) { /* read tine input and */
end. hour = rti me. hour; /* store in 'end' */
end.min = rtine.mn;
end.sec = rtine.sec;
}
br eak;
case 'S': /* Set Start Tine Command */
if (readtime (& nline[i+1])) { /* read tine input and */
start. hour = rtime. hour; /* store in 'start' */
start.min = rtime. mn;
start.sec = rtine. sec;
}
br eak;
defaul t: /* Error Handling */
printf (nenu); /* di splay command nenu */
br eak;
}
}
}
/***/
I* signalon: check if clock time is between start and end */

/***/

bit signalon () {
if (mencnp (&start, &end, sizeof (struct tinme)) < 0) {
if (mencnp (&start, &ctime, sizeof (struct tinme)) <0 &&
mencnp (&ctine, &end, si zeof (struct tinme)) < 0) return (1);

264 Glossary

else {
if (mencnp (&end, &ctine, sizeof (start))
mencnp (&ctine, &start, sizeof (start))

>0 &&
> 0) return (1);
return (0); /* signal off, blinking on */

/***/

/* Task 3 "blinking': runs if current time is outside start */
/* & end tine */
/***/
void blinking (void) _task_ BLINKING { /* blink yellow |ight */
red___1 = 0; /* all lights off */
yellowl = 0;
green_1 = 0;
stop__1 = O;
walk__1 = 0;
red___2 = 0;
yellow2 = 0;
green_2 = 0;
stop__2 = 0;
walk__2 = 0;
while (1) { /* endl ess | oop */
phaseno = 10;
yellowl = 1; /* yellow |Iight on */
yel low2 = 1;
os_wait (K_TMO, 30, 0); /* wait for tineout: 30 ticks*/
yel lowl = O; /* yellow |ight off */
yel l ow2 = 0;
os_wait (K_TMO, 30, 0); /* wait for tineout: 30 ticks*/
if (signalon ()) { /* if blinking tine over */
os_create_task (LIGHTS); /* start lights */
os_del ete_task (BLINKING ; /* and stop blinking */
}
}
}
/***/
/* Task 4 '"lights': executes if cur. time is between start */
[* & end tine */
/***/
void lights (void) _task_ LIGHTS { /* traffic |light operation */
/* * %X % PHASE 9*** */
/* dir 1: all red */
[* dir 2: all red */
phaseno = 9;
red___1 = 1; /* red & stop |lights on */
yellowl = 0;
green_1 = 0;
stop__1 = 1;
walk__1 = 0;
red_ 2 = 1;
yell ow2 = 0;
green_2 = 0;
stop__2 = 1;
walk__2 = 0;

while (1) { /* endl ess | oop */

RTX-51/RTX-251

266 Glossary

/****PHASE 5*** */

/* dir 1: stick to red, allow walk */

/* dir 2: switch to green */

phaseno = 5;

stop__1 =0

walk__1 =1

red___2 =0

yellow2 = 0

green_2 = 1;

os_wait (K_TMO, 30, 0); /* wait for tineout: 30 ticks*/
/****PHASE 6*** */

/* dir 1: accept car detect */

/* dir 2: accept pedestrian button */

phaseno = 6

os_wait (K_TMO + K SIG 250, 0); /* wait for tineout & signal */
/****PHASE 7*** */

/* dir 1: stick to red, forbid walk */

/[* dir 2: switch to yellow */

phaseno = 7;

stop__1 =1

wal k__1 = 0;

green_2 =0

yel low2 = 1;

os_wait (K_TMO, 30, 0); /* wait for tineout: 30 ticks*/

}
}

/***/

/*
/*

Task 5 'keyread': process key strokes from pedesttrian push */
but t ons */

/***/

voi d keyread (void) _task_ KEYREAD ({

while (1) { /* endl ess | oop */
if (phaseno < 4) { /* phaseno = 0..3 */
if (!key2) { /* if key pressed */
keypressed2 = 1;
os_send_si gnal (LIGHTS); /* send signal to 'lights' */
os_wait (K. TMO, 5, 0); /* wait for tineout: 5 ticks */
}
else { /* phaseno = 4..7 */
if ('keyl) { /* if key pressed */

}
}

keypressedl = 1

os_send_si gnal kLIGHTS); /* send signal to 'lights' */
os_wait (K. TMO, 5, 0); /* wait for tineout: 5 ticks */

}
os_wait (K. TMO, 2, 0); /* wait for tineout: 2 ticks */

/***/

/*

Task 6 'car_detl': process interrupt fromcar detector 1 */

/***/

void car_detl (void) _task_ CAR DET1 {
os_attach_interrupt (0); /* Attach I NTO */
TCON | = 0x01; /* Use edge-triggered */

RTX-51/ RTX-251 267

while (1) { /* endl ess | oop */
os_wait (K_INT, Oxff, 0); /* Wait for interrupt */
if (phaseno > 3) { /* phaseno = 4..7 */
if (!cardetected2 && ! keypressedl && !cardetectedl) {

os_send_si gnal (LIGHTS); /* send signal to 'lights' */
}
cardetectedl = 1;
}
}
/***/
/* Task 7 'car_det2': process interrupt fromcar detector 2 */

/***/

void car_det2 (void) _task_ CAR DET2 {

os_attach_interrupt (2); /* Attach INT1 */
TCON | = 0x04; /* Use edge-triggered */
while (1) { /* endl ess | oop */

os_wait (K_INT, Oxff, 0); /* Wait for interrupt */

if (phaseno < 4) { /* phaseno = 0..3 */
if (!cardetectedl && ! keypressed2 && !cardetected2) {

os_send_si gnal (LIGHTS); /* send signal to 'lights’ */
}
cardetected2 = 1;
}
}
/***/
[* MAIN : Start the system */

/***/
voi d nai n(voi d)

{
}

os_start_system (INIT); /* start the first task */

SERIAL.C

/***/

/* */
[* SERIAL.C: Interrupt Controlled Serial Interface for RTX-51 */
/* */

/***/

#pragma CODE DEBUG OBJECTEXTEND

#i ncl ude <reg52. h> /* special function register 8052 */
#i ncl ude <rtx51. h> /* RTX-51 functions & defines */
#define OLEN 8 /* size of serial transm ssion buffer */
unsi gned char ostart; /* transm ssion buffer start index */
unsi gned char oend; /* transm ssion buffer end index */
i dat a char out buf [OLEN] ; /* storage for transm ssion buffer */
unsi gned char otask = Oxff; /* task nunmber of output task */
#define ILEN 8 /* size of serial receiving buffer */
unsi gned char istart; /* receiving buffer start index */

unsi gned char iend; /* receiving buffer end index */

268 Glossary

i dat a char inbuf[ILEN; /* storage for receiving buffer */
unsi gned char itask = Oxff; /* task nunmber of output task */
#def i ne CTRL_Q 0x11 /* Control +Q character code */
#def i ne CTRL_S 0x13 /* Control +S character code */
bi t sendful | ; /* flag: marks transmt buffer full */
bi t sendacti ve; /* flag: marks transmitter active */
bi t sendst op; /* flag: marks XOFF character */

/***/

/* putbuf: wite a character to SBUF or transm ssion buffer */

/***/

put buf (char c) {

if (!'sendfull) { /* transmt only if buffer not full */
if (!sendactive & !sendstop) {/* if transmtter not active: */
sendactive = 1; /* transfer the first character direct*/
SBUF = c; /* to SBUF to start transm ssion */
else { /* otherw ze: */
out buf [oend++ & (OLEN-1)] = c¢; /* transfer char to transm buffr */
if (((oend N ostart) & (OLEN-1)) == 0) sendfull = 1;
/* set flag if buffer is full */
}
}
/***/
[* putchar: interrupt controlled putchar function */

/***/

char putchar (char c) {

if (c =="\n) { /* expand new |ine character: */
while (sendfull) { /* wait for transm ssion buffer enpty */
otask = os_running_task_id (); /* set output task number */
os_wait (K SIG 0, 0); /* RTX-51 call: wait for signal */
otask = Oxff; /* clear output task nunber */

}
put buf (0xO0D); /* send CR before LF for <new |ine> */
while (sendfull) { /* wait for transm ssion buffer enpty */
otask = os_running_task_id (); /* set output task nunber */
os_wait (K SIG 0, 0); /* RTX-51 call: wait for signal */
otask = Oxff; /* clear output task nunber */
put buf (c); /* send character */
return (c); /* return character: ANS| requirenent */

}

/***/
/* _getkey: interrupt controlled _getkey */

/***/

char _getkey (void) {

while (iend == istart) {
itask = os_running_task_id (); /* set input task nunber */
os_wait (K SIG 0, 0); /* RTX-51 call: wait for signal */
itask = Oxff; /* clear input task nunber */

}
return (inbuf[istart++ & (ILEN-1)]);
}

/***/

[* serial: serial receiver / transmtter interrupt */

RTX-51/ RTX-251

269

/***/
serial () interrupt 4 using 1 { /* use registerbank 1 for interrupt */
unsi gned char c;
bi t start_trans = O;

if (RI) { /* if receiver interrupt */
¢ = SBUF; /* read character */
Rl = 0; /* clear interrupt request flag */
switch (c) { /* process character */
case CTRL_S:
sendstop = 1; /* if Control +S stop transm ssi on */
br eak;
case CTRL_Q
start_trans = sendstop; /* if Control +Q start transm ssion */
sendstop = O;
br eak;
def aul t: /* read all other characters into inbuf*/
if (istart + ILEN!=iend) {
i nbuf [i end++ & (ILEN-1)] = c;
}
/* if task waiting: signal ready */
if (itask !'= OxFF) isr_send_signal (itask);
br eak;
}
}
if (Tl || start_trans) { /* if transmitter interrupt */
Tl = 0; /* clear interrupt request flag */
if (ostart != oend) { /* if characters in buffer and */
if (!sendstop) { /* if not Control +S received */
SBUF = outbuf[ostart++ & (OLEN-1)]; /* transmt character */
sendfull = 0; /* clear 'sendfull' flag */
/* if task waiting: signal ready */
if (otask != OxFF) isr_send_signal (otask);
}
el se sendactive = 0; /* if all transmitted clear 'sendactive*/
}
}
/***/
/* serial _init: initialize serial interface */

/***/

serial _init () {

SCON = 0x50; /* nmode 1: 8-bit UART, enable receiver */
TMOD | = 0x20; /* tinmer 1 node 2: 8-Bit rel oad */
TH1 = Oxf 3; /* rel oad val ue 2400 baud */
TR1 = 1; /* timer 1 run */
os_enabl e_isr (4); /* enabl e serial port interrupt */

GETLINE.C

/***/
/* */
[* GETLINE. C: Line Edited Character |nput */
/* */

270

Glossary

/***/

i ncl ude <stdio. h>

#def i ne CNTLQ
#def i ne CNTLS
#def i ne DEL
#def i ne BACKSPACE
#defi ne CR
#defi ne LF

/***************/

/* Line Editor */

/***************/

void getline (char idata *line
unsi gned char cnt = 0;

char c;

do

0x11
0x13
OX7F
0x08
0x0D
0x0A

{
if ((c = _getkey ())

if (c == BACKSPACE

if (cnt = 0)
cnt--;
line--;
put char (0x
put char ('
put char (0x

}

}
else if (c != CNTLQ && c ! = CNTLS)
putchar (*line = c);

li ne++;
cnt ++;

}
} while (cnt < n -

*line =0

}

Compiling and Linking TRAFFIC2

{

08) ;
Dk
08);

1 &&

unsi gned char n)

¢ = LF; /* read character
DEL) { /* process backspace

/* decrenment count
/* and |ine pointer
/* echo backspace

E

/
/
/

{

{/* ignore Control S/Q
echo and store character
increment |ine pointer
and count

c !=LF); /* check limt and line feed
/* mark end of string

*/
*/

*/

*/
*/

*/

*/
*/

*/
*/

The project file TRAFFIC2.PRJ contains all settings to compile, link and run the

example under dScope-51/251.

Testing and Debugging TRAFFIC2

The dScope-51/251 is started automatically upon completion of the link step. It
starts up using an initialization file (TRAFFIC2.INI). It loads the correct CPU
driver (80517.DLL), thetraffic program (TRAFFIC2.) and an include file for

displaying task status (DBG_RTX.INC). Then it activates watch points for the

traffic lights, defines functions for the pedestrian buttons, and starts the

TRAFFIC2 application.

RTX-51/RTX-251 271

When dScope-51/251 starts executing TRAFFIC2, the serial window will display
the following text:

+x*xkxxx TRAFF| C LI GHT CONTROLLER using C51 and RTX-51 *****x**4
This programis a sinple Traffic Light Controller. Between |
start tine and end tine the systemcontrols a traffic light |
wi th pedestrian sel f-service and approachi ng car detection. |
Qutside of this time range the yellow caution lanmp is blink- |

I

I

I

I

I

| ing.

+ command -+ syntax ----- + function --------------------------- +
| Display | D | display tines |
| Time | T hh:mmss | set clock tinme |
| Start | S hh:mmss | set start tine |
| End | Ehh:mmss | set end tinme |
dimcsoccocoas dhmcscccooccocoa dimccoccooscccoocccooccoccsocooococoooooos +
Command

TRAFFIC2 waits for you to enter acommand. Typed and press the ENTER key.
Thiswill display the current time and the start and end time range for the traffic
light.

For example:
Start Tine: 07:30:00 End Ti me: 18:30: 00
Clock Tine: 12:00:11 type ESC to abort

As the program runs, you can watch the red, yellow, and green lamps of the traffic
light change (the * update watch window’ option has to be activated). The
pedestrian buttons are simulated using F2 (direction 1) and F6 (direction 2). The
car detectors are simulated using F7 (direction 1) and F8 (direction 2). Pressfor
example F2 to seethe traffic light switch to RED and the WALK light switch to
on.

You can display the task status using F3 similar to before. The following task
information will be displayed:

ID | Start | Prio | State | Blocked for Event Mhx-Sem Timer Signal
2 A068H 1 BLOCKED THO 39 1]
i B1@8H a BLOCKED 51G a
4 B2ECH a BLOCKED SIG & THO 161 a
5 B3CAH 5} BLOCKED THO 2 a
¢ B48aH a BLOCKED INT a
] B43AH a BLOCKED INT 8

272 Glossary

Glossary

A251
The command used to assemble programs using the A251 Macro Assembler.

A51
The command used to assemble programs using the A51 Macro Assembler.

argument
Thevalue that is passed to macro or function.

(a)synchronous
In connection with real-time operating systems, the terms
synchronous/asynchronous are used to differentiate the type and way how a
certain program section is to be activated.
The synchronous entry in a program section always occurs the same way under
exactly definable circumstances (data values, state of CPU registers). This
means, individual program sections are always completely processed before
other program sections are executed. This guarantees data consistency (in the
case of correct program design).
The asynchronous entry occurs at a point in time which is not exactly known
(by an interrupt in a single-processor system), whereby no guarantee can be
made for the complete execution of individual program sections (without
additional measures being taken).

application
These are programs or program sections written by the user of RTX-51/251.

ISR (Interrupt Service Routine)
This designates a processor which is jumped to in the fastest way when an
interrupt occurs (direct viainterrupt vector). It is executed for each interrupt
from the start of the function up to the end. It runs asynchronous to the
operating system and may only call a restricted set of system functions (self

synchronized).

multitasking
Software system allowing several independent program sections to be executed
virtually in paralld.

parameter
Thevalue that is passed to a macro or function.

RTX-51/RTX-251 273

pointer
A variable that contains the address of another variable, function, or memory
area

preemption
If an event (e.g., interrupt, occurring message or signal, etc.) occurs which a
task has waited for (this having a higher execution priority than the currently
running task), this triggers a task switching. This means, the running task is
preempted.

real-time
Real-time describes software whose functional requirement is restricted to
certain time limits.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto the stack and popped off of the
stack. Itemsin the stack are removed on a LIFO (last-in, first-out) basis.

system
Usad instead of RTX-51/251 Real-Time Operating System. This designates
program sections of RTX-51/251.

task
Independent section of an entire program. Several tasks execute quasi paralld
in a multitasking system. The operating system allocates the processor time to
theindividual tasks. Therdevance of theindividual tasks is controlled by
priorities.

task interrupts
These are all interrupts which are served via the system interrupt handler.
Non-task interrupts are those types of interrupts which use a private interrupt
handler (C51/C251 interrupt function -> ISR).

task context
Thisisto be understood as all types of information which must be stored
during a task switching so that this task can be continued at the same position
at alater time. Depending on which time atask isto be stopped in its
execution (by atask switching), the task context can be of various complexity.

task suspended
Understood as a task switching with limited marginal conditions. If atask is
suspended so that another task can execute, then suspended task must first be

274 Glossary

reactivated in the next task switching. Suspended tasks represent an especially
efficient form of task switching.

task switching
Procedure which stops a running task, stores it in aform that it can be
continued later at the same position and reactivates another task which is stored

in the same way.

time-out
If atask iswaiting for an event (e.g., interrupt, message from mailbox or
signal), it is often desired to reactive a task, despite this, after completion of a
certain time (in the case this event does not occur). Thistime limit is referred
toasatime-out. Similar to this, activating of atask after completion of a set
timeisreferred to as atime-out (time-out event is perhaps more exact).

RTX-51/RTX-251

275

Index

(a)synchronous, defined 262
RTX?FLT _BITSEG 117; 121
RTXFTASKCONTEXT?L
120
RTXHFTASKCONTEXT?22
120
RTXZHFTASKCONTEXT?3
120

RTXPFTASKDATA?L 118
RTXFTASKDATA2 117
RTXFTASKDATA?3 117
RTXANT_MASK?RTXCONF
117; 121

RTX?PBP 117

RTX?PBP 121
RTXRTX_AUX_PAGE 119;
124
RTX?RTX_BIT_RELBYTE_ S
EG 117; 121
RTXRTX_BIT_SEG 117,
121

RTXRTX_MBX_PAGE 119;
124

RTX?RTX_SEM_PAGE 119;
124

RTX?RTX_SYS PAGE 119;
124
RTX?TASKCONTEXT? 119
RTX?2USER_NUM_TABLE?S
119; 124

?RTX_CPU_TYPE 126
PRTX_EXTRENTSIZE 119;
120

RTX_EXTSTKSIZE 119
RTX_INTSTKSIZE 117; 118
?RTX_STKSIZE 123
?STACK 117; 118

A251 11

A251, defined 262

A51 11

A51, defined 262

application, defined 262

argument, defined 262

Banked Linker 245

Basic CAN 132

BBM 228

BBM_RTX.H 243

BBM_TID 230

BBS 228

BBS RTX.H 243

BBS TID 230

BEM 227

Bit Time 177

Bitbus Rdease2 233

BL51 11; 245

BTL Cycles 177

Bus Timing 174

C251 11

C51 11
Code Bankswitching 37
Floating-Point Operations
34
Memory Model 33
Reentrant Functions 34
Register Bank 36
Runtime Library 35
Special Library 36

C51 Support 33

CAN Interface
can_def_obj 145; 147
can _get status 169
can_hw_init 139
can read 167
can _receve 155
can_request 165
can_start 150
can_stop 149
can task cregste 138
can_unbind_obj 160
can_wait 161

can_write 153
CAN_MESSAGE_STRUCT
151; 153; 155; 161; 167
CLKOUT 141
Clock Divider Register 141
Configurable Values 126
Configuration 109

Congtants 171

File 170

Hardware 170

Utility 109
Controller Status 169
Data

Reception 237

Transmission 236
DBG_RTX.INC 260
Debug

Functions 98; 102
Debug Functions

Overview 93
dScope-51 245
E PROTOCOL_ERROR 242
Example 245
Examples

Bitrate Configuration 175

Compiling and Linking

209; 214; 220; 224

Simple Application 207
Full CAN 132
Function Calls

can_bind _obj 158

can _send 151

Differences 137
Glossary 262
Hardware configuration 170
Header File 135
Index 265
Initialization 238

Functions 44
Installation 11
Interrupt

Connection 170

Enable Register 25

External 170

Functions 24; 26

Handling 23
Management 22
Overview 50
Priority Register 26
INTERRUPT ENABLE bits
126
Introduction 1
ISR, defined 262
L251 11
Mailbox 28; 230
Lists 29
Overview 74
Read Message from ~ 30
Send Messageto ~ 29
Memory
Assignement 116
Assignement for RTX-251
121
DATA for RTX-251 121
DATA for RTX-51 116
EDATA for RTX-251 121
Example 83
IDATA for RTX-51 117
Management 31
Mapping 170
Pool 32
Pool Overview 83
Request ~ from Pool 32
Return ~ to Pool 32
XDATA for RTX-251 124
XDATA for RTX-51 119
Memory Pools
Functions 85
Message
Functions 76
Message Buffer 234
MS-WINDOWS 109

multitasking, defined 262
Object |dentifier 145; 147
Object Memory

Sizeof 145
Sizeof 147

Outstanding Responses 241
parameter, defined 262

PLM51.LIB 243

RTX-51/RTX-251

277

pointer, defined 263
preemption, defined 263
Program Example 245
RAC Commands 241
Read Message 30
real-time, defined 263
reentrant functions 120
reentrant stack 120
Remote Frames 145
Resynchronization 178
RTX-51
Bitbus Task 229
CAN-Task 133
Fast Tasks 159
Priority Rules 159
RTX51.LIB 245
RTX-51/251 Functions 39
Include Files 40
isr_recv_message 79
isr_send message 78
isr_send signal 73
Name Conventions 39
Oi_reset_int_masks 62
oi_set_int_masks 60
os_check_mailbox 100
os_check_mailboxes 98
0s_check_pool 106
os_check_semaphore 104
os_check _semaphores 102
os_check task 96
0s_check tasks 94
0s clear_signal 72
os_create pool 85
0s_ddete task 48
0s_detach interrupt 54
os_disable isr 58
os_enable isr 56
os _free block 89
os_get_block 87
0s_running_task_id 49
0s_send_message 76
0s_send_signal 71
0s_send token 82
0s _set_dlice 92
0s_wait 65

Return Values 40
RTX-51/RTX-251 Functions
0s _create task 46
os_start_system 44
RTXCAN.H 135
RTXCONF.A51 126; 128
RTXSETUP 109
RTXSETUP.DCL 109; 128
Sampling Point 178; 181
SDLC 228
Semaphore 30
Functions 82
Overview 81
Send Token 31
Send Message 29
Sequence Error 242
Serial Interrupt 231
Signal
Clear ~ 28
Functions 71
Overview 70
Send ~ 28
Wait for ~ 27
Signals 27
Sleep Mode 140
Software Requirements 11
Stack 232
Stack Requirements 172
stack, defined 263
System Clock
Function 92
Overview 91
System Functions 39
System Variables
bbm en sig to app 230
bbm en sig to drv 229
bbm_rx_buf 229
bbm rx_tid 230
bbs en sg to app 230
bbs en sig to drv 229
bbs rx_buf 229
bbs rx_tid 230
tx_buffer 229
system, defined 263
Task

Classes 17
Communication 27
Declaration 20
Layouts 21
Management 46
Number 20
Priority 15; 20
Register bank 21
Return value 20
Signals 27
States 15

Switching 16
task context, defined 263
task interrupts, defined 263
Task Management 15
task stack 119
task suspended, defined 263
task switching, defined 264
task, defined 263
time-out, defined 264
TRAFFIC2 245
Wait Function 65

	Chapter 1Overview
	Chapter 2 Installation
	Chapter 3 Programming Concepts
	Chapter 4 Programmer's Reference
	Chapter 5 Configuration
	Chapter 6 CAN Support
	Chapter 7 BITBUS Support
	Chapter 8 Application Example
	Glossary
	Index

