
In this turorial we will see how we can easily interface a 24C series

serial EEPROM with AVR microcontrollers.

What is an EEPROM?

An EEPROM is kinds of novalatile memory, that means it is used for

storing digital data permanently without any power suply. EEPROM

stands for Electrically Erasable Programmable Read Only Memory.

The advantage of these kind of ROMs is that they can be erased

Electrically to make them ready for storing new data. Compare this

with a CD R disks they can be recorded only once. A small amount of

EEPROM is also available internally on the AVR chips. So if the

volume of data you want to store is small (say few user names and

password) then you can use it. The internal eeprom makes design small

and simple.

But if the amount of data you want to store is large, say in order of few

tens of kilobytes then you have to interface a External EEPROM chip

with your AVR MCU. You can store pictures, sound and long texts in

these eeproms.

Their are many kinds of EEPROM chip available from many

manufactures. One very common family is 24C series serial

EEPROMs. They are available upto 128KB in size. They uses I2C

interface with host controller (MCU) which is a very popular serial

communication standard. I will write more indept tutorial on I2C in

comming days and in this tutorial I will give you easy to use function

that you can use without any knowledge of I2C interface.

In this tutorial we will be using 24C64 EEPROM chip which has 8192

bytes = 8 KB = 8x1024 bytes of data storage.

The chip has storage location which have their unique address ranging

from 0-8191. Consider these as storage cells so while storing and

retriving data you have to tell the chip which cell location you want to

read.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

1 of 11 3/20/2009 6:32 PM

Fig. : Storage Cells inside the 24C64 EEPROM Chip.

For exaple if you read location 0003 you will get 99 (see image above).

Note each cell can store 8BITs of data so range you can store is 0-255

(-128 to +127). So if you want to store bigget data like int you have to

store them in two cells.

Hardware Setup

Connect your ATmega32 with 24C64 chip as shown in the circuit

diagram. You can use any avr development board for the purpose or

assemble the whole circuit in a Breadboard or Veroboard.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

2 of 11 3/20/2009 6:32 PM

Fig. : Circuit Setup for 24C64.

Software Setup

Download and add the following files to your AVR Studio project. Now

you can use the following functions for EEPROM interfacing.

24c64.h

24c64.c

Download Here.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

3 of 11 3/20/2009 6:32 PM

EEOpen()

Arguments - None

Returns - Nothing

Description: This function should be called before any

read/write operation. This functions initialize the

communication channel.

EEWriteByte(unsigned int address,uint8_t data)

Arguments

address : where you want to store data. The

address must be within the range of EEPROM chip

used.

data : 8 bit data you want to store at the address

given.

Returns

1 on success

0 on failure

Description: Use this function to store a 8bit value in any

EEPROM storage cell.

EEReadByte(unsigned int address)

Arguments

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

4 of 11 3/20/2009 6:32 PM

address : from where you want to read data. The

address must be within the range of EEPROM chip

used.

Returns

The value stored in the specified EEPROM storage

cell.

Description: Use this function to read a 8bit value from

any EEPROM storage cell.

Sample Program.

The following sample program demonstrate the use of external

EEPROM interfaing functions. The program makes use of the LCD

library for AVRs to display information in a 16x2 LCD display. The

program first writes 8Kbytes of data to a 24c64 eeprom to fill the

whole eeprom with '7' and then it reads back to see if all the location

has 7. If the condition is met the screen shows "Write Successfull"

message.

I have used my xBoard - An Advance ATmega32 development board

to test the routines. You can use any devboard with ATmega16 or

ATmega32 MCUs. The 24C64 was mounted on a Breadboard.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

5 of 11 3/20/2009 6:32 PM

Fig. : 24C64 Serial EEProm Interface with

ATmega32.

The 5v,GND,SDA,SCL were connected to the xBoard development

board.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

6 of 11 3/20/2009 6:32 PM

Fig. : xBoard with MCU ATmega32.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

7 of 11 3/20/2009 6:32 PM

Fig. : Output of 24C64 test program.

/*

A sample program to test the Extrenal EEPROM interfacing

routines. The program fills the whole EEPROM with 7 and

then reads the whole EEPROM memory to see if all of them

contains 7.

This helps in quick testing of you hardware /software before

using these routines in your own programs.

The target for this program is ATmega8, ATmega16, or ATmega32

running at 16MHz. If you use slower crystal the program will

simply run slow but without any problems.

This program also makes use of eXtreme Electronics 16x2 LCD

Interfacing routines. See the related page for more info

Author : Avinash Gupta

Date : 16 March 2009

Mail : me@avinashgupta.com

Web : www.eXtremeElectronics.co.in

NOTE: IF YOU USE THIS LIBRARY IN YOUR PROGRAMS AND FINDS

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

8 of 11 3/20/2009 6:32 PM

IT USEFUL PLEASE MENTION US IN CREDIT AND RECOMEND OTHERS.

*/

#include <avr/io.h>
#include "util/delay.h"

#include "24c64.h"

#include "lcd.h"

/**********************************

A simple delay routine to wait

between messages given to user

so that he/she gets time to read them

***********************************/

void Wait()
{
 uint8_t i;

 for(i=0;i<100;i++)
 _delay_loop_2(0);
}

void main()
{
 //Varriables
 uint8_t failed;
 unsigned int address;

 //Initialize LCD

 LCDInit(LS_BLINK);

 //Init EEPROM
 EEOpen();

 _delay_loop_2(0);

 LCDClear();
 LCDWriteString("External EEPROM");

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

9 of 11 3/20/2009 6:32 PM

 LCDWriteStringXY(0,1,"Test");

 Wait();

 LCDClear();
 LCDWriteString("Writting...");

 //Fill whole eeprom 8KB (8192 bytes)

 //with number 7
 failed=0;
 for(address=0;address<8192;address++)
 {
 if(EEWriteByte(address,7)==0)
 {
 //Write Failed

 LCDClear();
 LCDWriteString("Write Failed !");
 LCDWriteStringXY(0,1,"Addess = ");
 LCDWriteInt(address,4);
 failed=1;
 Wait();
 break;
 }
 }

 LCDClear();

 if(!failed)
 LCDWriteString("Written 8192bytes");

 Wait();

 LCDClear();
 LCDWriteString("Verifying ...");

 //Check if every location in EEPROM has

 //number 7 stored
 failed=0;
 for(address=0;address<8192;address++)
 {
 if(EEReadByte(address)!=7)
 {
 //Failed !

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

10 of 11 3/20/2009 6:32 PM

 LCDClear();
 LCDWriteString("Verify Failed");
 LCDWriteStringXY(0,1,"Addess = ");
 LCDWriteInt(address,4);
 failed=1;
 Wait();
 break;
 }
 }

 if(!failed)
 {
 //We have Done it !!!

 LCDClear();
 LCDWriteString("Write Success !");
 }

 while(1);

}

Downloads

All the required files for 24C eeprom interfacing with AVR MCUs.

Untitled Document file:///C:/Avinash/MyWeb/ee.co.in/AVR%20Tutor...

11 of 11 3/20/2009 6:32 PM

