
1

RL-ARM
RTX Real-Time Kernel

TCPnet Networking Suite
Flash File System

USB Device Interface
CAN Interfaces

June 2009

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

2

Software Development Tools

3

Today�s Microcontroller Selection

 Microcontroller have
 Processor

 On-chip Memory

 Interrupt System

 Rich peripheral set

 I/O Pins, Timers, PWM

 A/D and D/A converters

 UART, SPI, I2C

 Complex communication
peripherals (CAN, USB,
Ethernet)

Block Diagram of a Standard
Microcontroller

JTAG Debug

Two CAN Channels

On-chip Flash

Power management, RTC, reset and watchdog, internal
oscillator and PLL

80 GPIO Pins

SRAM,
Serial Wire Debug (SWD) &
Serial Wire Viewer (SWV)

USB 2.0 Interface

Cortex-M3

SD/MMC card Interface 16-bit standard Timers
including PWM

12-bit A/D converter
(Sixteen channels) Three USART Channels

10/100 Ethernet MAC Two channels for I2C, I2S,
SPI & SSI

4

Embedded Connectivity Challenges

 Embedded devices are used everywhere
 Need to support many different interfaces�

 CAN, USB, SD/MMC, Ethernet

 �and different protocols

 HTTP, FTP, SMTP...

 Customers demand ease of use

 Today�s embedded devices need to
support plug and play compatibility

 Developers need more functionality
 Ability to support a wide range of interfaces

 Need better development and debug tools for this task

5

 A collection of resources for solving these challenges
 Middleware components created and used by ARM engineers

What is RL-ARM?

Delivered as libraries
and source code

Flexible usage model (with
or without the RTX Kernel)

Provided for many
popular microcontrollers

Uses RTX Kernel
messaging implementation

All components are
royalty-free

All library components
supplied - no hidden costs

6

Where is RL-ARM used?

 Everywhere that embedded devices are connected
 It supports traditional embedded functions

 For example CAN in industrial applications

 And emerging applications for embedded devices

 Web-based and mass storage products

 In simple and complex applications
 Optimized routines give fast performance

from a small code footprint

 Component libraries can be used stand-alone or integrated with
other resources and optional RTX kernel

 Templates and examples are provided for all applications on
lots of popular microcontrollers

7

How does RL-ARM work for me?

 Integrated solution
 Developed with MDK-ARM, the tools and middleware

are guaranteed to work together

 ARM engineers can support every part of your project

 Cost effective
 Allows you to focus effort on developing the important

parts of your application

 Provides tested and optimized components

 Proven and reliable
 Thousands of designs using RL-ARM in the field today

 Trusted in applications by ARM and its partners

8

Using RL-ARM with MDK-ARM
 MDK includes dedicated support for RL-ARM functionality

 Examples supplied as µVision projects � ready to build

 Build options include settings for RL-ARM resources

 Debugger includes RTX Kernel awareness

Detailed view of system status from µVision IDE

9

µVision Configuration Wizard
 User friendly way to adjust settings

 No need to search for relevant source code sections

 All useful parameters are instantly accessible

 Less risk of making mistakes

 Simple checking of selected values

10

RL-TCPnet
TCP/IP Networking Suite

11

TCPnet Networking Suite
 Add network support to your projects quickly and easily

 Libraries support common network protocols

 Supplied with templates and examples ready to port to any target

 Take advantage of standard networking applications

Email,
SMTP

Modem,
PPP

Serial, SLIP Web interface,
HTTP

Remote Access,
Telnet

TCPnet Networking Suite

FTP ServerCGI Scripting DNS Resolver

Modem UARTEthernet Debug UART

PPPUDPTCP DHCPARP

Telnet ServerHTTP Server SMTP Server

SLIP

ARP,
IEEE 802.xx network

12

 Control LEDs from a remote PC or another board
 Example implementations of TCP and UDP

Example � using networked devices

LAN

Ethernet Switch

PC running LED
Switch Utility

Evaluation Boards with LED Switch Client

LEDSwitch Utility
C++ PC application with

source code

13

 Access the board from a browser
 Control LEDs & LCD etc

 View board status, switches inputs etc

 TCPnet includes a HTTP server
 Typically used to host web-sites

 Also provides a web-style interface
to your application

 C interface to CGI scripts

Example � using a HTTP server

14

 Two items must be added to the project
 Both supplied with RL-ARM

 Ethernet can be enabled and parameters chosen graphically

Using TCPnet to enable Ethernet

Library containing TCP
stack and hardware drivers

Configuration settings for
network components

Check-boxes enable desired
network components

Configurable options instantly
accessible via configuration wizard

15

TCPnet built-in debug support
 TCPnet provides optional debug information

Control the debug level
for each network component

View network activity via log
files or terminal window

16

Examples shown using Cortex M3 device at 96MHz, 100 Mbps full duplex

Using CMSIS compatible Ethernet drivers

TCPnet Performance
UDP TCP

Packet size Packets / sec kByte / sec Packets / sec kByte / sec

10 19,790 176 7,540 74

200 21,370 4,164 6,450 1,272

400 17,490 6,820 5,600 2,202

600 14,230 8,330 4,730 2,782

800 11,950 9,360 4,210 3,300

1000 10,370 10,090 3,736 3,652

1200 9,120 10,670 3,322 3,894

1400 8,140 11,130 3,082 4,215

17

TCPnet footprint � 5 sockets enabled
Demo Example Total ROM Size Total RAM Size

HTTP Server (without RTX Kernel) 41,984 Bytes 20,112 Bytes

HTTP Server (with RTX Kernel) 45,240 Bytes 21,776 Bytes

Telnet Server 22,312 Bytes 20,112 Bytes

TFTP Server 34,996 Bytes 24,320 Bytes

SMTP Client 16,736 Bytes 19,600 Bytes

LED Switch Server 11,220 Bytes 19,568 Bytes

LED Switch Client 15,328 Bytes 19,576 Bytes

DNS Resolver 15,328 Bytes 19,776 Bytes

 HTTP Server: Web Server supporting dynamic Web pages and CGI Scripting

 Telnet Server: with command line interface, authorization etc

 TFTP Server: for uploading files (for example Web pages to a Web Server)

 SMTP Client: for sending automated emails

 LED Switch Server and Client: shows basic TCP/IP and UDP communication

 DNS Resolver: used to resolve IP address from the host name

 Further TCP sockets require an approximate 2kB additional space

18

RL-Flash
Flash File System

19

 Enables industry-standard file system compatibility
 Accessed via standard I/O function calls

 Two file system implementations provided
 Small & fast file system for internal RAM and ROM

 FAT32/16/12 for external storage � SPI Flash, SD/MMC cards

Flash File System (RL-Flash)

Flash File System

Flash DriverFile Table FAT32/16/12

Flash ROMRAM SD/MMC

Standard C File I/O Functions

ROM

SD/MMC,
storage

ROM/RAM,
data access

Sub-directories,
folder support

8.3 and long filenames,
royalty-free option available

20

 Standard file I/O with SD Card
 Command line interface

 Interfaces with UART or RTX

RL-Flash Example
SD Card

21

Figures shown were achieved working with 4MB of data in 4KB blocks

RL-Flash Performance
Board Device CPU Core CPU

[MHz]
Card Interface Write

[KB/s]
Read

[KB/s]

MCBSTM32 ST STM32 Cortex-M3 72 SPI at 18MHz 711.1 758.1

LM3S8962
Luminary
LM3S8962

Cortex-M3 50 SPI at 12.5MHz 537.8 607.6

LM3S6965
Luminary
LM3S6965

Cortex-M3 50 SPI at 12.5MHz 539.2 603.6

LM3S3768
Luminary
LM3S3768

Cortex-M3 50 SPI at 12.5MHz 539.5 603.8

AT91SAM9G
20-EK

Atmel
AT91SAM9G20

ARM9 99 SD4 at 25MHz 4,083.8 5,403.7

MCB2400 NXP LPC2468 ARM7 48 SD4 at 24MHz 4,084.3 5,525.9

MCB2300 NXP LPC2368 ARM7 48 SD4 at 24MHz 3,946.3 5,330.6

MCB2140 NXP LPC2148 ARM7 60 SPI at 7.5MHz 299.4 313.4

MCBSTR9 ST STR912 ARM9 48 SPI at 12MHz 355.2 357.1

MCBSTR750 ST STR750 ARM7 60 SPI at 15MHz 402.2 416.1

22

RL-USB
USB Device Interface

23

USB Device Interface (RL-USB)
 Offer plug and play compatibility for your design

 Enables interfaces for standard USB device classes
 Uses native drivers provided for Windows 2000/XP/Vista

Human
interface
devices

Audio,
entertainment &
communications

Mass storage,
drives, cameras...

Comms devices,
telephone modems...

24

RL-USB Configuration
 Device configuration settings are easy to access

 User must select the appropriate settings for their device

 Start with a standard USB template
 Adjust USB Core Parameters

 Update the Device Descriptors

 Extend the USB Event Handlers

 Composite devices
 Single device with multiple functions

 e.g. keyboard with mousepad

 Configure each function in turn

 Implement USB Class Code

 Add USB Class Code from
the related USB Template

 Re-assign USB Event Handlers
USB Configuration using the

µVision Configuration Wizard

25

 Example USB templates include:

Audio, PC speaker

Storage, memory stick

CDC, virtual COM port

RL-USB Example � HID Template
 Human Interface Device

 Connects to PC without driver
 LED�s controlled from PC application
 Switches reported to PC application

HID Client Application
supplied with source code

USB

26

RL-CAN
CAN Interface

27

CAN Interface (RL-CAN)
 Generic CAN driver with hardware adaptations

 Interrupt-driven hardware layer

 Supports several ARM-based microcontrollers

 Common API for access to many CAN controllers
 Including Atmel, NXP, ST, Luminary, TI, Toshiba

Configure
and

initialize
devices

Send,
request and

receive
messages

 Implemented using RTX Kernel
Memory Pool
Message Passing

28

RL-CAN Examples

CAN Tx

CAN Rec LEDs

Analog Input
Voltage

Incremental
Script

 Hardware
 A/D Converter gets input voltage from Potentiometer

 Input Voltage sent every second via CAN2

 Message received via CAN is shown on LEDs via CAN1

 Using µVision Simulation
 Script generates A/D input voltage

 Messages received via CAN2

29

RL-CAN Virtual Simulation Registers
 µVision provides VTREGs

 Allows control of communication
(CAN, I2C, SSP, SPI)

 CAN I/O can be simulated and
scripted using these registers

30

µVision Debug & Signal Functions
 Users can define and generate input functions as

stimuli to simulation models

 Scripts for CAN Input
and Output Messages

 Signal Functions

 Automated Message
Processing

 Periodic CAN Messages

FUNC void Print_CANmessage (void) {
switch (CAN0OUT) {
case 1: printf("\nSend 11-bit ID=%X", CANAID);
break;
case 2: printf("\nSend 29-bit ID=%X", CANAID);
break;
case 3: printf("\nRequest 11-bit ID=%X", CANAID);
return;
case 4: printf("\nRequest 29-bit ID=%08X",
CANAID); return;

}
printf("\nMessage Length %d, Data: ", CAN0L);
printf("%X � %X", CAN0B0, �, CAN0B7);

}

FUNC void SendCANmessage (void) {
CAN0ID = 0x4500;// message ID = 0x4500
CAN0L = 2; // message length 2 bytes
CAN0B0 = 0x12; // message data byte 0
CAN0B1 = 0x34; // message data byte 1
CAN0IN = 2; // send message with 29-bit ID

}

31

RTX Real-Time Kernel

32

Software Concepts for ARM
 Embedded applications typically have two design concepts

 �main� as Infinite Loop

 Each task called from main loop

 Interrupts perform time-critical jobs

 Stack usage un-predictable

 User manages task interactions

 Using a Real-Time Kernel

 Allows application to be separated into independent tasks

 Message passing eliminates critical memory buffers

 Each task has its own stack area

 Interrupt communication with event flags and messages

33

Why use a Real-Time Kernel?
 Structured framework for embedded applications

 Hardware interface layer

 Easy expansion of system software

 Hardware independent

 Housekeeping
 Process scheduling

 CPU resource management

 Task communication

 Focus on Application Development
 Leave basic system management to the RTOS kernel

 Avoid re-writing resource management code that already exists

 Reduce porting and testing overheads

34

What makes a Good RTOS?
 Performance

 Predictable behaviour

 Low latency

 High number of interrupt levels

 Ease of Use
 Flexible API and implementation

 Tool-chain integration

 Scheduling options

 Multitasking, Pre-emptive, Round Robin

 System Friendly
 Consumes small amount of system resource

 Proven kernel

 Low cost

35

Real-Time?
 Real-Time does not simply mean High Speed

 Not all tasks are �Most Urgent�
 Tasks need to complete before deadline and other tasks

 Real-Time OS not to be confused with high speed requirements

 Real-Time, not mission critical
 Varying levels of Real-Time

 Hard, Firm, Soft and Non

 RTOS not confined to critical systems

 Deterministic behaviour is often most important

 A Real-Time OS is a framework
 RTOS provides good multitasking environment

 Reliable and scalable management of housekeeping tasks

36

RTX Real-Time Kernel
 Full-featured real-time kernel for embedded systems

 Process Management
 Create and delete tasks, change task priorities

 Manage event flag and CPU resources

 Multi-Tasking
 Pre-emptive context switching, scheduling, and semaphores

 Real-Time Control
 Deterministic behaviour

 Inter-task communication
 Mailbox management

 Interface to interrupt functions

 Memory allocation
 Thread-safe (usage even in ISR)

37

RTX Specifications
 Provides all real-time kernel requirements

 Multi-Tasking � Round Robin, Pre-emptive, Cooperative

 Unlimited � User Timers, Semaphores and Mailboxes

 Royalty free

Task Specifications

Priority Levels 256

No. of Tasks Defined Unlimited

No. of Tasks Active 256

Context Switch < 300 Cycles

Interrupt Latency < 100 Cycles

Memory Requirements Bytes

CODE Space
(depending on used functionality)

1.5K � 5K

RAM Space
(each active task requires its own
stack space)

< 500

38

RTX Performance

Task Specifications ARM7TDMI Cortex-M3

CPU Clock Speed 60MHz 72MHz

Initialize system, start task 46.2µS 22.1µS

Create defined task, (no task switch) 17.0µS 8.1µS

Create defined task, (with task switch) 19.1µS 9.3µS

Delete Task 9.3µS 4.8µS

Task Switch 6.6µS 3.9µS

Set event (no task switch) 2.4µS 1.9µS

Send semaphore 1.7µS 1.6µS

Send message 4.5µS 2.5µS

Max Interrupt lockout for IRQ ISR�s 3.1µS -

39

Enabling RTX in MDK-ARM

Infinite while loop in main() is
replaced by an OS initialisation call

Core application duties are defined
as RTOS tasks

Graphical configuration of RTOS
settings

40

Kernel Aware Debugging
 RTX and µVision are tightly integrated

 Kernel status information is easily visible

 Tasks and Event analysis

 Resource Loading

41

RTX Event Viewer
 Displays task switching and events of a running RTX system

 Available on running Cortex-Mx devices or using µVision simulation

42

 Traffic Light
 LEDs are timed or controlled by push button

 Uses interrupt control, event management, and multitasking
capabilities of RTX Kernel

RTX Examples

43

RTX Examples

CAN Tx

CAN Rec LED�s

Analog Input
Voltage

Incremental
Script

 CAN Example using RTX
 Mailbox and event handling

 CAN Send (Tx) � shows automatic data handling capabilities

 CAN Rec � message checking with instant message receipt

� task wait and return

� almost impossible without Real-Time Kernel

44

 Summary of main points

 RL-ARM Roadmap

 Learn more and get started

RL-ARM � What�s next?

How does RL-ARM
work for me?

What new features
can I expect to see?

Where can I get
more information?

45

How does RL-ARM work for me?
 Develop robust and powerful applications fast

 The RTX kernel and sources, gives you all the
resources you need to create and control multi-threaded,
real-time applications that can be tailored to your system.

 Ensure you only do what you have to
 RL-ARM enables USB, TCP/IP networking and

file-system support. Use existing resources to ensure you
focus on the important parts of your application.

 Take advantage of the expertise of others
 RL-ARM is designed, tested and optimised by

ARM engineers. Documentation and examples make it
easy to re-use the work done by our experts.

46

New features coming to RL-ARM
 Next release � September 2009

 Next year
 New lightweight graphics library

 CMSIS compliant components

 Enhanced USB support � Host, Hub & OTG

RL-Flash FAT FS will
tolerate power-failures

User/admin access
control for HTTP login

FTP client and
host support

 Now!
RTX Kernel

task A task B task C

Library code

function
1

function 2

Full thread-safe
implementation of all features

47

Need More Help?
 Application Notes on www.keil.com/appnotes

 192: Using TCP/IP Examples on ARM Powered Evaluation Boards

 195: Developing HID USB Device Drivers For Embedded Systems

http://www.keil.com/appnotes

48

Get More Information
 Customers use www.keil.com on a daily basis to obtain

 Program examples

 Latest technical information

 Application Notes

 Program Examples

 Device Database

 Support Knowledgebase

 Discussion Forum

http://www.keil.com

