RL-ARM

RTX Real-Time Kernel
TCPnet Networking Suite
Flash File System
USB Deuvice Interface
CAN Interfaces

N June 2009

Software Development Tools

Microcontroller Development Kit [_/5M518

Complete software development
environment for Cortex-Mx and
ARM7/9 microcontrollers

Easy to learn and use, yet powerful
enough for the most demanding
embedded ARM application

MDK-ARM

Microcontroller Development Kit

ARM CIC++ Compiler

RTX RTOS Kernel Library

u¥ision
Device Database & IDE

pYision
Debugger & Analysis Tools

Examples and Templates

Complete Device Simulation

ULINK USB Adapters

On-the-fly debugging and Flash
programming via JTAG or serial
interface e

RTX and Real-Time Library

Fully featured real-time kernel

Library of middleware components to
speed up software development and solve
real-time and communication challenges

Real-Time Library

RTX RTOS Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

B
E
&
:
[}
3
B
E
g
L

CAN Interface

Today’s Microcontroller Selection

= Microcontroller have

Processor

On-chip Memory

Interrupt System

Rich peripheral set

JTAG Debug
On-chip Flash

Serial Wire Debug (SWD) &
Serial Wire Viewer (SWV)

Cortex-M3

Power management, RTC, reset and watchdog, internal

[|/O Plns’ TlmerS, PWM oscillator and PLL

= A/D and D/A converters
u UART, SPI, |2C (Sixteen channels)

= Complex communication 101100 Ethernet MAC
peripherals (CAN, USB,

Ethernet)

USB 2.0 Interface Two CAN Channels

12-bit A/D converter Three USART Channels

Two channels for 12C, 12S,
SPI & SSI

16-bit standard Timers
including PWM

SD/MMC card Interface

80 GPIO Pins

Block Diagram of a Standard
Microcontroller

Embedded Connectivity Challenges

= Embedded devices are used everywhere
= Need to support many different interfaces...
= CAN, USB, SD/MMC, Ethernet
= _..and different protocols
= HTTP, FTP, SMTP...

= Customers demand ease of use

= Today’s embedded devices need to
support plug and play compatibility

= Developers need more functionality

= Ability to support a wide range of interfaces
= Need better development and debug tools for this task

- I |

What is RL-ARM?

= A collection of resources for solving these challenges
= Middleware components created and used by ARM engineers

All library components
supplied - no hidden cos RL-ARM

Real-Time Library

All components are
royalty-free

Flexible usage model (with
or without the RTX Kernel

RTXRTOS Source Code

Provided for many
popular microcontrollers

PnetNetworking Suite

Flash File System

USB Device |nterface Uses RTX Kernel

Delivered as libraries messaging implementation

and source code

Where is RL-ARM used?

= Everywhere that embedded devices are connected & :‘?
= |t supports traditional embedded functions /
= For example CAN in industrial applications
= And emerging applications for embedded devices
= Web-based and mass storage products

= |n simple and complex applications

= Optimized routines give fast performance
from a small code footprint

= Component libraries can be used stand-alone or integrated with
other resources and optional RTX kernel

= Templates and examples are provided for all applications on
lots of popular microcontrollers

S

How does RL-ARM work for me?

= |ntegrated solution

= Developed with MDK-ARM, the tools and middleware
are guaranteed to work together

= ARM engineers can support every part of your project

Y (
~

9
2 anf

()

= Cost effective

= Allows you to focus effort on developing the important = @
parts of your application ’
= Provides tested and optimized components L

= Proven and reliable

= Thousands of designs using RL-ARM in the field today
= Trusted in applications by ARM and its partners J

A 2

Using RL-ARM with MDK-ARM

= MDK includes dedicated support for RL-ARM functionality
= Examples supplied as pVision projects — ready to build
= Build options include settings for RL-ARM resources
= Debugger includes RTX Kernel awareness

Active Tasks]Systam} Event Viewer RTX Kernel
TID | Task Mame. Priciity | State | Delay | Event'alue | Eventhask | Stack Load Active Tasks] System Event Yiewer
2 phased 1 WalT_DLY 1226 32z
3 phaseB 1 WAIT_aMD 0x0000 0x0001 32%
4 phasel 1 WAIT_AND 00000 0x0001 3% ki Tirne: M aw Time: Range: Grid: Zoom:
£ clock b_q 65 | 34441935 | 200.0000s | 10.00000s (flni) Out| &l | Sel| W Running
7o led ()
285 oz idle_demon
Active Tasks System 1 Event V\ewer1 Idle
- System service usage phazed | (R AEE. ARN. 1AL (NUL (WAL SN NN, NSl INNL WAL EE
Active Auailable phaseB 1 Il 1 1]] 1 n 1] 1l n 1]
Tasks: |6 af |10 ANNEENNREENNEEER phasel | I 1l n 1 1l I [I 1 1 n
User Timers: |0 of 232 phaseD | S L1 O O L O 0 L I X O L
clock » - - - - - - - - - -
Configurat ed 1 1 " o o
Timer nurnt ber: |0 Fiound Robin Timeout: 125843?2. maec W 5 = el
s ouse Pos urs0n elta
Tickitiner: [SICETASE. meee . |Time: 1651030 5 0.000000 s 165.1030 s = 0.00605683 Hz
Stack size: |200 bytes Tasks with User-provided Stack: 10 180 Dlﬂﬂﬂ 5 250 Dlﬂﬂﬂ i 2500000 =
Stack overflow check [| %

Detailed view of system status from pVision IDE

A B

puVision Configuration Wizard

= User friendly way to adjust settings
= No need to search for relevant source code sections
= All useful parameters are instantly accessible
= Less risk of making mistakes
= Simple checking of selected values

B Met_Config.c* l - X Met_Config.c* v X
o0gs <i» Default: 152 Z‘
Expand All I Collapze Al | Help 00%6 #define IP1 192
H[}=F]
Option | Walue b oogg S <ordddress byte £ <0-Z55>
+|- Systern Definitions oogs oo <i» Default: 1687
[=- Ethernet Metwork Inkerface v 0090 #define TIPZ 168
¥ MAC Address o031
S IP Address nogz s <orfdddress byte 3 <0-25&5-
Address byte 2 168 095 -
- Address byte 3 o 0% /S <orAddress byte 4 <0-Z55>
. Address byte 4 w7 /s <i> Default: 100
+ Subnet mask, L\\S Default: 100 | 0098 #define IP4 28
+- Default Gateway v nosa
oo S Sk f
o] »
~ Text Editar .\-'-.l:|:||'_|I‘igl_:||._|ra|l:i|_:|_n_'ln'lgl'iz_'cjm:l_l.-Ir Text Edil:url.-'-r.| Configuration Wizard I.-'r

- I |

RL-TCPnet
TCP/IP Networking Suite

RL-ARM
Real-Time Library

RTX RTOS Source Code
TCPnet Networking Suite
Flash File System

USB Device Interface

(/3
3
L

o

5
[
T

c

<

L3
D

o

£

©
>
11}

CAN Interface

TCPnet Networking Suite

= Add network support to your projects quickly and easily
= Libraries support common network protocols
= Supplied with templates and examples ready to port to any target
= Take advantage of standard networking applications

& U 6 & €

Email, Modem, Remote Access, Serial, SLIP Web interface,
SMTP PPP Telnet HTTP

TCPnet Networking Suite

=
i;é HTTP Server Telnet Server SMTP Server

ARP, CGl Scripting FTP Server DNS Resolver
IEEE 802.xx network

Ethernet Modem UART Debug UART

Example — using networked devices

= Control LEDs from a remote PC or another board
= Example implementations of TCP and UDP

. £ LEDSwitch (|
PC running LED iz B
. - ~Pratocal— — Transfer port——
Switch Utility -
« TCP 1007
" UDP
~BoardIP——
]192.158.2.110
__pz /
15 Bits g
LAN [0 I
A S | |

Ethernet Switch

LEDSwitch Utility
v v C++ PC application with
TN s et — source code

Evaluation Boards with LED Switch Client

J—]

Example — using a HTTP server

= Access the board from a browser
= Control LEDs & LCD etc
= View board status, switches inputs etc

" TCPnet includes a HTTP server
= Typically used to host web-sites

= Also provides a web-style interface
to your application

= C interface to CGI scripts

/% Parse all returned pacameters. */
dat = http get_var (dat, var, 40):;

if (var[0] != 0)
/% Parameter found, returned string is non 0-length.
if (st.r_scump (var, "ledl=on®™) == _TRUE] {
P2 |= Ox01:

+
else if (str scomp (var, "ledl=on") == TRUE) {
P2 |= Ox02;

L

Embedded Development Tools [>Z|!n(“§°!mb

Control LEDs on the board

This pags shows you how to use the following http form input objects: checkbox, sele
ses also a simple Java Script function to check/uncheck all checkboxes and submit the data

This Form uses a POST method to send data to a Web server,

Item Setting
» LED control: | Browser

» LED diode ports [7..0]: 07 @6 @s @4 O3 0201 O0

» 4l LED diodes On or OFF

Using TCPnet to enable Ethernet

= Two items must be added to the project

= Both supplied with RL-ARM

=823 5TM3210D [=1-#23 5TM3210D 1 NI =524 5TM3210D ~
[#-(Z7] HTTP Files [#-(Z5] HTTP Files lerary Contal ni ng TCP [#-{Z7] HTTP Files 3
-7 Saurce Files [+-{77] Saurce Files H [#1-{77] Source Files
[#-{77 Configuration Files [+]-{77]_ConEiguwetrT StaCk and hardware drlve rs = a Configuration Files
=23 Library / e Library ERESY et _Corfi c
TCP_cMa.lib TCP_CM3.lib Met_Debug.c
TCPD_CM3.lib TCPD_CHM3 b . . .] RT#_Config.c
- [£] ETH_5TM3zx.c - (2 T Conflg u ratl on Sett| ng S for / Startup.s
] system_stm32CLD.c # system_stm32CLD.C B Startup_RTX.s L
+-(77] Dacumentation +-{77] Dacumentation network com po nents . : E :E:i::nnl'al'inn v
]EProjectl@Boaks | {}Funct...l[].,TempI...|]EProjectl@Books | {}Funct...l[].,TempI...|]EPFOJE'I'@BOOKS | {}FUﬂCt---lunEI'ﬂpl---|

= Ethernet can be enabled and parameters chosen graphically

MNet_Config.c*

Expand &l | Collapse &l | Help Check-boxes enable desired

—
Optin v/ network components
+| Swstem Definitions
= Ehernet Metwork Interface v

+- MAC Address

T ettt 12 Configurable options instantly
e e 2 168) accessible via configuration wizard
ress byke 3 a
Address byte 4 1

+- Subnet mask

+- Defauls Gateway

+|- Primary DM3 Server

+- Secondary DNS Server
+|- ARP Definitions

Text Editar :'\l:onﬁguration Wizard fn'r

|€

A]

TCPnet built-in debug support

= TCPnet provides optional debug information

Met_Debug.c

Expand All | Collapze All Help ContrOI the debug Ievel
- _ for each network component
= TCPnet Debug Definitions [
Memary Management Debug Errars only
Ethernet Debug Errors only
PPP Debug Off
SLIP Debug OfF
ARP Debug Errars only
IP Dabug Errors only & TCPnet Debug - HyperTerminal
ICMP Debug Errors anly File Edt Wiew Call Transfer Help
IGMP Debug Errors only — = —
UDP Debug Errars only D= 3 DB
TCP Debug Full debug DHCP: Received DHCP_OFFER message ~
- s e D
. Server Identif.: 1. :
BHCP Debug Ful debua e DHCP :Sending BCast DHCP_REQUEST. . .
DS Debug Errors only DHCP: Next state REQUESTING
Application Debug Errors anly DHCP: === Processing DHCP frame ===
DHCP ERR:Mrong KID, dumping packet
e hcomonotinviond | e ey e
DHCP: Client state REQUESTING
DHCP: Received DHCP_ACK message
DHCP: IP Address 0 10.1.201.40
DHCP: T1 timeout . 302400 sec
DHCP: T2 timeout 1 929200 sec
e e
I /I 1 : Net Mas : : : ;
View network activity via log DHCP: Defoult Gatemay: 101201 1
H H . : Prim. erver: 1.2,
files or terminal window . Sec. DNS Server: 10.1.2.2
: Next state BOUND
_ . i
Connected 00:00:33 Auto detect 115200 8-H-1 . © UM

TCPnet Performance

UbP TCP
Packet size Packets / sec kByte / sec Packets / sec kByte / sec
10 19,790 176 7,540 74
200 21,370 4,164 6,450 1,272
400 17,490 6,820 5,600 2,202
600 14,230 8,330 4,730 2,782
800 11,950 9,360 4,210 3,300
1000 10,370 10,090 3,736 3,652
1200 9,120 10,670 3,322 3,894
1400 8,140 11,130 3,082 4,215

Examples shown using Cortex M3 device at 96MHz, 100 Mbps full duplex
Using CMSIS compatible Ethernet drivers

J &

TCPnet footprint — 5 sockets enabled

Demo Example Total ROM Size ‘ Total RAM Size

HTTP Server (without RTX Kernel)

41,984 Bytes

20,112 Bytes

HTTP Server (with RTX Kernel)

45,240 Bytes

21,776 Bytes

Telnet Server

22,312 Bytes

20,112 Bytes

TFTP Server

34,996 Bytes

24,320 Bytes

SMTP Client

16,736 Bytes

19,600 Bytes

LED Switch Server

11,220 Bytes

19,568 Bytes

LED Switch Client

15,328 Bytes

19,576 Bytes

DNS Resolver

15,328 Bytes

19,776 Bytes

= HTTP Server: Web Server supporting dynamic Web pages and CGI Scripting
= Telnet Server: with command line interface, authorization etc

= TFTP Server: for uploading files (for example Web pages to a Web Server)

= SMTP Client: for sending automated emails

= |LED Switch Server and Client: shows basic TCP/IP and UDP communication
= DNS Resolver: used to resolve IP address from the host name

= Further TCP sockets require an approximate 2kB additional space

RL-Flash

Flash File System

RL-ARM
Real-Time Library

RTX RTOS Source Code
TCPnet Networking Suite
Flash File System

USB Device Interface

(/3
3
L

o

5
[
T

c

<

L3
D

o

£

©
>
11}

CAN Interface

Flash File System (RL-Flash)

= Enables industry-standard file system compatibility
= Accessed via standard I/O function calls

= Two file system implementations provided
= Small & fast file system for internal RAM and ROM
= FAT32/16/12 for external storage — SPI Flash, SD/MMC cards

Directory of C:ntmp

27,85,2087 @8:52 <DIR>
27,85-,2009 0@8:52 <DIR>

1 File<{s> yte
2 Dirds> 143.698.612.224 hytes free

\ 8.3 and long filenames,
SD/MMC royalty-free option available

ROM/RAM,
data access storage

Flash File System

J Standard C File I/O Functions

27,85,208% @8:52 14 LONGFI™1.TXT ﬂang Filename .txt
14 b s

Lw File Table | Flash Driver | FAT32/16/12

Sub-directories,
folder support

ROM RAM Flash ROM SD/MMC

RL-Flash Example

= Standard file 1/0 with SD Card
= Command line interface

= |nterfaces with UART or RTX

£ 5TM3210D. - HyperTerminal
File Edit Wiew Cal Transfer Help

[B]KEIL
D &5 OO s '
~

+-— +
| SD/MMC Card File Manipulation exasmple | = STM3210D - HyperTerminal
+ command -—--—————————- + funetion - + File Edit Wiew Cal Transfer Help
| CLP fname [/A4] | captures serial data to a file | o= OB
| | [/4 oprtion appends data to & file] | =
| FILL fname [thhnn] | mreate & file filled with text | E
| | [nnnn - nuber of lines, default=1000] | Cmd> dir
| TY¥PE fname | displays the content of a text file | i i
| REN fnawel fname:z | renames a file to 'fnawez! | File System Directory...
| COPY fin [fin2] fout | copies a file 'fin' to 'four' file | Mi.TIT 1.000.014 oi.1i.2006 1z:00

- - -) Mz . TET Z.000.02& 0O1.11.20068 12:00
| | ['finz' option merges 'fin' and 'finz'] | M4 . TXT 4.000.056 01.11.2006 12:00
| DEL fname | deletes a file | M8 . TXT §.000.112 01.11.2006 12:00
| DIR [mask] | display=s a list of files in the directory | Mi6.TET 16.000.224 01.11.2006 1Z:00
| FORMAT [label] | formats Flash Memory Card I M3Z. TET 32.000.448 01.11.2006 12:00
| HELF or 7?2 | displays this help I M&4. TXT 64.000.896 01.11.2006 1z:00
oo A + 7 File(s) 1z7.001.775 bytea

863.469.568 hytes free.
Crod >
Crmd-
v
£ | >
Disconnected Auta detect 115200 §-N-1 Disconnected Auto dstect | 115200 8-1-1 AR5 | I ~apture

RL-Flash Performance

Board Device CPU Core CPU Card Interface Write Read
[MHZ] [KB/s] [KB/s]
MCBSTM32 ST STM32 Cortex-M3 72 SPI at 18MHz 711.1 758.1
Luminary _
LM3S8962 LM3S8962 Cortex-M3 50 SPI at 12.5MHz 537.8 607.6
Luminary _
LM3S6965 LM3S6965 Cortex-M3 50 SPI at 12.5MHz 539.2 603.6
Luminary)
LM3S3768 LM3S3768 Cortex-M3 50 SPI at 12.5MHz 539.5 603.8
AT91SAMIG Atmel
20-EK AT91SAMIG20 ARM9 99 SD4 at 25MHz 4,083.8 5,403.7
MCB2400 NXP LPC2468 ARM7 48 SD4 at 24MHz 4,084.3 5,525.9
MCB2300 NXP LPC2368 ARM7 48 SD4 at 24MHz 3,946.3 5,330.6
MCB2140 NXP LPC2148 ARM7 60 SPI at 7.5MHz 299.4 313.4
MCBSTR9 ST STR912 ARM9 48 SPI at 12MHz 355.2 357.1
MCBSTR750 ST STR750 ARM7 60 SPI at 15MHz 402.2 416.1

Figures shown were achieved working with 4MB of data in 4KB blocks

A]

RL-USB
USB Device Interface

RL-ARM
Real-Time Library

RTX RTOS Source Code
TCPnet Networking Suite
Flash File System

USB Device Interface

(/3
3
L

o

5
[
T

c

<

L3
D

o

£

©
>
11}

CAN Interface

USB Device Interface (RL-USB)

= Offer plug and play compatibility for your design
= Enables interfaces for standard USB device classes
= Uses native drivers provided for Windows 2000/XP/Vista

Lo e
'&5“\3 i

Human Audio, Mass storage, Comms devices,
interface entertainment & drives, cameras... telephone modems...
devices communications

USB Device Driver

HID Device MSD Device Audio Device

USB Core

USB Event Handler

USB Hardware Layer

RL-USB Configuration

= Device configuration settings are easy to access
= User must select the appropriate settings for their device

= Start with a standard USB template

= Adjust USB Core Parameters v x
= Update the Device Descriptors ipenddl | Colipsel el
= Extend the USB Event Handlers pore Ve v
= Composite devices T o sospomers
= Single device with multiple functions o o IEnntfpr:ncf: :
= e.g. keyboard with mousepad AR e

+- LUSE Event Handlers

= Configure each function in turn

= |mplement USB Class Code

= Add USB Class Code from
the related USB Template |, Text Edtor_}, Configuration Wizard /

= Re-assign USB Event Handlers

17171+«

USB Configuration using the
MVision Configuration Wizard

- I |

RL-USB Example — HID Template

= Human Interface Device ~- HID Client
Hurnan Interface Device]
= Connects to PC without driver Pivie kel MCBSTRI HID 5
= LED’s controlled from PC application Bl = S
= Switches reported to PC application O s s
Outputs [LED=]

¥ B 5 4 2 1]
b2s FrRrRECRC

HID Client Application
supplied with source code

= Example USB templates include:

-~
Audio, PC speaker @‘/

Storage, memory stick &

CDC, virtual COM port

RL-CAN
CAN Interface

RL-ARM
Real-Time Library

RTX RTOS Source Code
TCPnet Networking Suite
Flash File System

USB Device Interface

(/3
3
L

o

5
[
T

c

<

L3
D

o

£

©
>
11}

CAN Interface

CAN Interface (RL-CAN)

= Generic CAN driver with hardware adaptations
= |nterrupt-driven hardware layer
= Supports several ARM-based microcontrollers

= Common API for access to many CAN controllers
= Including Atmel, NXP, ST, Luminary, Tl, Toshiba
= Implemented using RTX Kernel

| M — Memory Pool
& ﬁp Message Passing

Configure Send,

and request and CAN Interface
initialize receive Can Driver
devices messages '

RTX Memory Pool RTX Messages
CAN Hardware Layer

RL-CAN Examples

= Hardware
= A/D Converter gets input voltage from Potentiometer
= |nput Voltage sent every second via CAN2
= Message received via CAN is shown on LEDs via CAN1

= Using pVision Simulation
= Script generates A/D input voltage

)) Analog Input =—» CAN Tx

= Messages received via CAN2 Voltage

CAN Communication

Incremental _, CAN Rec ™ LEDs

Mumber] Statesi ﬂ] I [Hex]] Dir] Len] D ata [Hex) J Script

10 480013333 2 021 Wmit 1 58

11 490581113 1 021 Rec 1 02

12 502581120 1 021 Rec 1 D03

13 514581121 1 021 Rec 1 D04

14 526581122 1 021 Rec 1 08§

15 538581123 1 021 Rec 1 DB

16 FA0013304 2 091 N GalPurpuse InputfOutput [GPIO)

1; gggggﬂgg 1 gg] EZE] g; 31 Bits 2423 Bits 1615 Bits 8 7 Btz 0O
13 E7A5E1176 1 0o Rec 1 09 |UD|HS]m R R O T
20 AEERA11ZY 1 021 Rez 1 04 I0SET: |0=00000000 EEENEREE EEEEEEEE DERERENE EEEEEEEE
21 93581128 1 021 Rec 1 OB

22 FOO0T3HY 2 021 Wmit 1 0B IOCLR: (000000000 [T 7T T T T T FT T T T T T T
73 510581129 1 021 A 10

% e2%Eiian 1 02 Ree 1 0D L A o ol o o v o e g el i e e
= I L g e 1O Fins: [0FFFFFFFF G wMM Y MRV RVVYY MVVRVVYY Ry YVve
27 53581133 1 021 Rec 1 10 =

28 BEO0T3333 2 021 wmit 1 3 W]

29 70581134 1 021 Rec 1 M v

J &

RL-CAN Virtual Simulation Registers

= uVision provides VTREGS

= Allows control of communication
(CAN, I12C, SSP, SPI)

= CAN I/O can be simulated and
scripted using these registers

y

CaNxID

CaM=L

CaNzBO
LG CANRBT

< CaNxIN

< CaNxOUT

CaNATIMING

Is an 11-hit or 29-bit identifier of the message currently
transferred. The ID size is specified with the walues in the
CANOIN or CAMODOUT YTREG. For short 11-hit identifiers only
the 11 LSB bits are used of this WTREG.

The data length of the CAM message. Yalid walues for CANOL
are 0...8.

The data bytes of the CAN message. 8 data bytes are
implemented to access the individual message bytes of the
current object.

Is set by the user or within debug functions to simulate
incoming messages. The following values are possible:

= CANXIN = 1 receive the current message using a 11-hit
identifier.

= CANXIN = 2 receive the current message using a 29-hit
identifier,

m CANxIM = 3 request a remote frame from the application
prograrm with matching 11-bit identifier,

m CANxIM = 4 request a remote frame from the application
prograrm with matching 29-bit identifier,

m CANRIM = OxFF simulate BUSOFF mode of the Can
controller. CAN®IN is set to 0 by the simulator when the
message has be processed by the p¥ision3 simulator,

Is set by the simulator when transmitting a message by the
application program. The following values are possible:

m CANROUT = 1 transmit the current message using a 11-hit
identifier.

m CANxOUT = 2 transmit the current message using a 29-hit
identifier,

m CANxOUT = 3 request a remote frame with matching 11-bit
identifier from the user or debug function.

m CANxOUT = 4 request a remote frame with matching 29-bit
identifier from the user or debug function.

Allows you to set a performance factor that controls the
simulated communication timing within pYision3. This
performance factor simulates a busy CAN network, With a
performance factor of 0 an CAN network with infinite
baudrate is simulated. With a factor of 1 the CAN messages
are transferred in real-time taking care of the current
selected communication baudrate, & factor of 2 simulates the
performance that is identical to 50% of the communication
baudrate. CANxTIMING is a floating point value that can be
between 0 .. 1000.

puVision Debug & Signal Functions

= Users can define and generate input functions as
stimuli to simulation models

FUNC void SendCANmessage (void) ({

O Scripts for CAN Input CANOID = 0x4500;// message ID = 0x4500
CANOL = 2; // message length 2 bytes
and Output Messages CANOBO = 0x12; // message data byte 0
CANOB1 = 0x34; // message data byte 1
CANOIN = 2; // send message with 29-bit ID

}

FUNC void Print CANmessage (void) ({
switch (CANOOUT) ({

= Signal Functions

case 1: printf("\nSend 11-bit ID=%X", CANAID) ;
break;
= Automated Message '
) g case 2: printf("\nSend 29-bit ID=%X", CANAID) ;
Processing break;
case 3: printf("\nRequest 1ll-bit ID=%X", CANAID) ;
return;
]] case 4: printf("\nRequest 29-bit ID=%08X",
= Periodic CAN Messages CANAID) ; return;
}
printf ("\nMessage Length %d, Data: ", CANOL) ;
printf ("%$X .. $X", CANOBO, .., CANOB7) ;

}

A 1

RTX Real-Time Kernel

MDK-ARM RL-ARM

Microcontroller Development Kit Real-Time Library

ARM C/C++ Compiler RTX RTOS Source Code
RTX RTOS Kemel Library

TCPnet Networking Suite

Flash File System

HVision
Device Database & IDE
HVision
Debugger & Analysis Tools

Complete Device Simulation CAN Interface

USB Device Interface

Examples and Templates
Examples and Templates

Software Concepts for ARM

= Embedded applications typically have two design concepts
= ‘main’ as Infinite Loop

= Each task called from main loop
= |nterrupts perform time-critical jobs
= Stack usage un-predictable

= User manages task interactions

= Using a Real-Time Kernel

= Allows application to be separated into independent tasks
= Message passing eliminates critical memory buffers

= Each task has its own stack area

= [nterrupt communication with event flags and messages

J—

Why use a Real-Time Kernel?

= Structured framework for embedded applications
= Hardware interface layer
= Easy expansion of system software
= Hardware independent

= Housekeeping
= Process scheduling
= CPU resource management
= Task communication
= Focus on Application Development
= [eave basic system management to the RTOS kernel

Embedded System

Application Software

Hardware Driver

Real-Time Kernel

Hardware

= Avoid re-writing resource management code that already exists
= Reduce porting and testing overheads

A]

What makes a Good RTOS?

= Performance
= Predictable behaviour
= Low latency
= High number of interrupt levels

= Fase of Use
= Flexible APl and implementation
= Tool-chain integration
= Scheduling options
= Multitasking, Pre-emptive, Round Robin
= System Friendly
= Consumes small amount of system resource
= Proven kernel
= | ow cost

A]

Real-Time?

= Real-Time does not simply mean High Speed
= Not all tasks are ‘Most Urgent’
= Tasks need to complete before deadline and other tasks
= Real-Time OS not to be confused with high speed requirements

= Real-Time, not mission critical
= Varying levels of Real-Time
= Hard, Firm, Soft and Non
= RTOS not confined to critical systems

= Deterministic behaviour is often most important

= A Real-Time OS is a framework
= RTOS provides good multitasking environment
= Reliable and scalable management of housekeeping tasks

S

RTX Real-Time Kernel

= Full-featured real-time kernel for embedded systems

= Process Management
= Create and delete tasks, change task priorities
= Manage event flag and CPU resources

= Multi-Tasking
= Pre-emptive context switching, scheduling, and semaphores

= Real-Time Control

RTX Kernel

= Deterministic behaviour

M Mailbox

. . emory Delay &

" |nter-task communication Interval
Scheduler Event &

= Mailbox management Semaphore
= Interface to interrupt functions

= Memory allocation
= Thread-safe (usage even in ISR)

J &

RTX Specifications

= Provides all real-time kernel requirements
= Multi-Tasking — Round Robin, Pre-emptive, Cooperative
= Unlimited — User Timers, Semaphores and Mailboxes
= Royalty free

Task Specifications ‘ Memory Requirements Bytes
Priority Levels 256 CODE Space 1.5K - 5K
dependi d functionali

No. of Tasks Defined Unlimited (depending on used functionality)

: RAM Space < 500
No. of Tasks Active 256 (each active task requires its own
Context Switch < 300 Cycles stack space)
Interrupt Latency < 100 Cycles

J &

RTX Performance

Task Specifications ARM7TDMI Cortex-M3
CPU Clock Speed 60MHz 72MHz
Initialize system, start task 46.2US 22.1uS
Create defined task, (no task switch) 17.0uS 8.1uS
Create defined task, (with task switch) 19.1uS 9.3uS
Delete Task 9.3uS 4.8uS
Task Switch 6.6uS 3.9uS
Set event (no task switch) 2.4uS 1.9uS
Send semaphore 1.7uS 1.6uS
Send message 4.5uS 2.5uS
Max Interrupt lockout for IRQ ISR’s 3.1uS -

J &

Enabling RTX in MDK-ARM

3N2-int main

33 initialid
34 while (1
35 task = get_responsel(];
36 switch (task){ B C-\Keil\AR
37 case 'M': measure task():
38 break: & 309 S *—
319 31u| *
320 case '3': Save measurement i
321 hreak: & 312-]int 3
4 N3 o5 - -
e |
315 =
e R R P R

B C:\KeilMRMARL\RTX\Exan

Collapze Al

Opkion
=) Task Definitions
Mumber of concurrent ru

b

Mumber of kasks with user-prowided

Task stack size [bytes]

5]
1
Drefine mak. number of tasks that will un at the same time.
Default: &

I

Infinite while loop in main() is

replaced by an OS initialisation call

Core application duties are defined

clock task (void):
get_escape (void):
command task (void)
measure task (void):
interval task (void):

Savre cureq

Check For the stack overflow s
Mumber of user timers i}
= Syskem Timer Configuration

RTX Ketnel timer

Project Workspace
=224 Simulator
+-[77 Main Files
—|-£5 Configur ation Files
¥

Timer clock value [Hz]
Timer tick walue [us]

B Startup.s
+-[77 Documentation

Text Editor }\Eunﬁguratiun Wizard

as RTOS tasks

brototvpes */7

mples\MeasurelexampleRTOS.c

t_task (void): ke iy
__task void clock task (void):

__task woid get_escape (void):

_ task wvwoid command task (wvoid];

__task void measure_task (void):

__task woid interval task (void):

Kernel Aware Debugging

= RTX and pVision are tightly integrated
= Kernel status information is easily visible

Advanced RTX

Active Tazks] S_lrlgtem]

TID | Task Name | Priority | State | Delay | Event'alue | Event Mask | Stack Load

0 o:_clock_demon 285 WAIT_ITV 1 RTX Kernel

2 clock 1 RUMMIMG] S

3 R — 1 BEADY Active Tasks] System Ewent Yiewer]

4 Iights 1 W"ﬁ'lT_D LY all] bdin Tirne: b aw Time: Range: Grid: Zoom:

5 keyread 1 WOAIT_DLY 4] ' 0.000B26: | 3444193 | 20000005 [1000000s [fq3 out| a0 Sell & Runrin

285 og_idle_demon 1] READY ' ' _j_l_] :

Idie

phaseA | | 8| 8 | U6 (@ [| (%R AR
phaseB m n n m L[} n n n 1 n n
phaSECI...Ill..lllllllllllllll.II...I.|...|I...II....I...III..IiII.

phasel | 1 1 | I 1 I 1 | I 1 I

= Tasks and Event analysis Gt | | | 1o ! | P [1

et 1%' Rl b M e el R L LRl

. i Mouse Pos Cursar Delta
= Resource Loading e
150, D|DDID Is IIIIIIIIIIIIIII 250 D|DDID Is IIIIIIIIIIIII 35ID.IDIJIDDI 3
i E

J &

RTX Event Viewer

= Displays task switching and events of a running RTX system
= Available on running Cortex-Mx devices or using pVision simulation

B RTX Kernel %)

Bctive Tasks] Spstemn Event Viewer l

bir Tirne: bdaw Time: Range: Grid: Zoom:
(0BE4510ns [19.47867 s | 5.000000s | 0.250000s [In | uut] gu] 5.3|| ¢ Eiwirine

it
S| - o s oo SR A w6 SN TED T AR SR N SN B B A R 2
o [Ittt it (bl -l Pt
0 I T R i T [| I (R
S B R G R R R R R
o e | B I R e E S S R

o Mouze Poz Curzor Delta
Time: 30101071 = 3013363 3262019 mz = 306,569 Hz

AT TR SN N ST S I S Y-S SRS S S Y-S 0 TRV S U S SO0 S P
2.000000 = T S 4.500000 = 7.000000 =

| s

>

A]

RTX Examples

= Traffic Light
= |LEDs are timed or controlled by push button

= Uses interrupt control, event management, and multitasking
capabilities of RTX Kernel

= LUART #1 ElE)E

B C:Keil2VARMARLRTXMExam ples\Traffic\RTX_Config.c BE®
+=xxx TRAFFIC LIGHT COWNTROLLER using RVCT and RTH kernel =ssxsxy Expand Al Collapse Al Help
| This program is a simple Traffic Light Controller. Betwsen | —] —j 4]
| start time and end time the system controls a traffic light | Cipton | Walue
| with pedestrian self-service. Outside of this time range | =l Task Definitons
| the vellow caution lamp is blif_lkinﬁ- [~Nurmber of concurrent running tasks &
* E?m?nd - ————————— e ————————————————— - Number of tasks with user-provided stack 1
I Ti;g ay I - Task stack size [bytes] 200
| Start | . - -~ Check for the stack overflow 2
| End | Hhele 1 System | Event Views: - Nurmber of user tirmers 0
o) | o] Task Name | Priority | State | Delay | EvertValue | Event Mask | Stack Load ~ SRR L _
b emee 0 os_clock_demon E O OWATITY 1 4107 2 Rilaietmel imer s nmenl
Start Time: of 1 get_escape 1 wialT_OR 00000 0x0100 B2% ~Timer clock value [Hz] 12000000
flock Time : 1 2 clock 1 WAIT_ITY 43 40% “Timer tick value [us] 10000
) 3 command 1 WalT_OR 00000 00003 13% +-Pound-Robin Task switching I
4 lights 1 WAIT_DLY 24 44%
5 kewead 1 WAl T_DLY 4 403
255 oz_idle_demon 0 RUMMING 0
i Text Editor 4, Configuration Wizard f
S |

RTX Examples

= CAN Example using RTX

= Mailbox and event handling

= CAN Send (Tx) - shows automatic data handling capabilities

= CAN Rec — message checking with instant message receipt
— task wait and return
— almost impossible without Real-Time Kernel

|

CAN Communication

Mumber] Statesi ﬂ] 1D [Hex)] Diir] Lenj D ata [Hex)] Ea:

10 480M3333 2 021 Xmt 1 58

11 490581119 1 021 Rec 1 02

12 s02%81120 1 021 FRec 1 03 Analog Input =—» C

13 514531121 1 021 Rec 1 M ginp AN Tx
14 F26531122 1 021 Rec 1 05

15 F33531123 1 021 Rec 1 06 VOItage

16 BAO013304 2 021 Mmt 1 28

17 550581124 1 021 Rec 1 W7

18 E62581125 1 021 Fec 1 03 Incremental y
13 574561126 1 021 Rec 1 09 . — CAN Rec e LED S
20 REESENIZT 1 021 Rec 1 O Scnpt

71 F99581125 1 021 Rec 1 0B

2 BOOOI3319 2 021 Rmt 1 DB -

3 F10531123 1 o2t Rec 1 0OC

2 £22531130 1 021 Rec 1 0D

=5 £34531131 1 021 Rec 1 IE

% B4E521132 1 021 Rec 1 IF

27 B5A581133 1 021 Rec 1 10

2 BEONI3333 2 021 Xmt 1 3 B

2 E70531134 1 021 Rec 1 1 v

A]

RL-ARM — What’s next?

= Summary of main points

RL-ARM

€., How does RL-ARM Real-Time Library
_/) work for me?

RTXRTOS Source Code

= RL-ARM ROadmap TCPnetNetworking Suite

What new features Flash File System
can | expect to see?

USB Device Interface

w
o)
i
B
5
=t
=
s
[y
wn
=
=
E
s
>
w

= |_earn more and get started B —

Where can | get
| more information?

How does RL-ARM work for me?

= Develop robust and powerful applications fast
= The RTX kernel and sources, gives you all the

real-time applications that can be tailored to your system. ; l

resources you need to create and control multi-threaded,

= Ensure you only do what you have to

= RL-ARM enables USB, TCP/IP networking and
file-system support. Use existing resources to ensure you
focus on the important parts of your application.

= Take advantage of the expertise of others

= RL-ARM is designed, tested and optimised by
ARM engineers. Documentation and examples make it
easy to re-use the work done by our experts.

New features coming to RL-ARM

= Now!

RL-Flash FAT FS will User/admin access
tolerate power-failures control for HTTP login

RTX Kernel

task A task B -

&N
L____) | %

FTP client and
host support

W W W W T S

I

Library code

= Next year Full thread-safe
= New Iightweight graphics Iibrary implementation of all features
= CMSIS compliant components

= Enhanced USB support — Host, Hub & OTG

A]

Need More Help?

" Application Notes on www.keil.com/appnotes
= 192: Using TCP/IP Examples on ARM Powered Evaluation Boards
= 195: Developing HID USB Device Drivers For Embedded Systems

E? AppNote 192: Using TCP/IP Examples on ARM-powered Evaluation Boards

Hide Back Frint Options

Contents | Search | s - o

= Application Note 192: Using TCP/IP Examples on KE I L
= {23 TCRAF Basics ARM-powered Evaluation Boards

5] Ethernet MAC Adh An ARM® Company

[E] TCP/IP Connectic

2] IP Address Setup

[E] EasyWEB Example Keil provides extensive TCP/IP examples for ARM-powered evaluation boards such as the Keil MCBSTR9, the Atmel
[£] LED Switch Server SAM7X, or the Phytec LPC229x Board. These evaluation boards offer a 10Base-T (RJ45) standard Ethernet interface

[E] LED Switch Client for fast data transmission in a local area network (LAN). This application note explains the usage of the Keil TCP/IP
5] HTTP Server examples with evaluation boards.

=5

Software that handles a TCP/IP or a UDP communication is a lot more complex than running a simple serial interface.
The chapter TCP/IP Basics explains the terms used and explains the TCP/IP connections and configuration possiblities.

The RealView Microcontroller Development Kit {(MDK-ARM) comes with the popular EasyWEB example which
implements a small TCP/IP stack and a webserver. EasyWEB is an entry-level example that may be compiled with a
MDK-ARM evaluation version. EasyWeb handles the protocols ARP, ICMP, IP and TCP and is optimized for low resource
consumption, not for performance.

The RealView Real-Time Library (RTL-ARM) adds to MDK-ARM essential components for real-time applications such
as a full-featured RTOS Kernel including source code, TCP/IP networking support, Flash File System, and various
communication drivers. RTL-ARM includes a complete ground-up implementation of a fast and reliable TCR/IP
Networking Suite (library) that can be fully configured and offers extensive debugging facilities.

RTL-ARM ships with the following TCP/IP example applications that help you to understand the performance of this
solution:

= LED Switch Server controls LED's using a TCP/IP connection (ethernet, SLIP, or PPF),

= LED Switch Client sends commands to the LEDSwitch Server,

= HTTP Server, a Web Server supporting dynamic Web pages and CGI Scripting,

= Telnet Server with command line interface, user authorization, etc.,

» TETP Server for uploading Web pages to a Web Server,

= SMTP Client for sending automated emails,

= DNS Resolver used to resolve IP address from the Host name.

|

Daovicinn Hicknemr
AT

A]

http://www.keil.com/appnotes

Get More Information

= Customers use www.keil.com on a daily basis to obtain
= Program examples
= [atest technical information
o plication Notes
= Program Examples

Ele Edit Yew Favorites Tock Help
adecs) hitpfovww kel com/

Embedded Development Tools
3 List of Chips Supported by Keil - Microsoft Internet Explorer

File Edt View Favorites Tools Help
acchess | @) hitp: /fwa kel corn/ddf
™ o
1 Z KE I L I
u DeV|Ce Database 504 Compn
2 Keil Product Support - Microsoft Internet Explorer
File Edt Wiew Favertes Tools Heb
S t K | | I adress | @) hitp: /A kel com/sLpport/ |
| | g pp DZ' An ARM® Company
eil - Discussion Fo ead oso et Explo B T —
. . Ele Edt View Favorites Tooks Hep r
. D I S C u S S I O n I O r u m e e o e B
Discussion Forum [>Z| KEIL | "I
ard
Home _Products _Events _Support _Search _Index Company Information jtations
los J1. ADUCE32, ADUCESd, ADUCB3E,
|7 aoucess
Threads 1-25 of 7,771)
role
36,355 Total Heszag
242 postedfony (La 30 0are) 7024, ADUCTOZE, ADUGTOZE, = =
gebase —
Next Oldest Start A Thread _Settings _Forum Search
£ Enum
No. Subject Author Product Last Reply Replies| G ULINK AS
7934 sgog up sauare rvot computation (aporasimation Alexander Loue G166 _06/30/06 04:54 10 hoseanmER s
7954 * call by value does not work Soenke Hanses C166 _ 06/30/06 04:14 51 DEYICE
7535 * par araph chandu sri 51 _0s/30/08 0113316 | suppoRT
7953 * intearation and disintegration of float interms of charactor satish munot €51 06/30/06 01: [F7C5103, AT83/87C5141,
7552 ~intearation and of flot interms of charactor satish munot 51 08/30/05 01:29 0 i ey [scsisnDs, aTazrsL
7951 * How to start a DAC program? Benjamin Teoh €51 06/29/06 21: 0 1L CS1/A51 Tl e
“Debugaing with Proteus im
7950 * Debuaaing LPC2124 with Proteus VM Sack L ARM__06/25/06 16:16 0 e
7543~ why Rich Sosnrichsen _ARM _06/25/06 15:34 S [
7345 * : Michael Jacobson __Cs1_06/29/06 12:03__0
7545 * startup file for MCP2103 for GNU compiler Tahrim Chowdhury _ARM _06/25/06 11:05 0 icles L
7935 * Viewing output in loaic analyzer window Senthil arumugam __Cs1__06/29/06 10:44__1
7547 * Simulating LPC2148 UOFDR reqister at Kell debugger Joso marting ARM_06/29/06 101420
7535 * Creating L1 and .t file Kiran kumar 51 0s/25/08 07:36 3 TeocS1lUz, Te3/BICSIRR2, I
7946 *the ons us istor in assembly lanauage Mardette Lo Cies os/2o/08 0sisz 2 /675242, T83G5101, 16365102,
7622 * ADUC 845 - Start code execution at E000h instead of 0000h 7 Christoph Franck __ Csi__06/29/06 04:1s 1 faealocus] roredaree;
e300 % « Cs1_0s/25/08 03z1 5 ASSicaiad TEs0cTee
7541 * bit type Cios 06/29/08 011442
7545 * file system for LPC IDE KEIL MCP2140 (LPCZ148 SD on base ELFS testtest ARM _06/26/06 23:05 0 o2 asirnioss, ararnaon
7944 * how to locate a code variable in a specific bank Karsh z None _08/26/06 23:05__0 04,
7662 * Does anyone have a nested using armee. Chris wilkon ARM oe/26/06 13:25 2
7942 * 12C Page Write problem Alexander Hess €51 06/28/06 12:17 [
7540 * RTL-ARM TCP /1P footprint? David perry RN o6/26/06 09:19 0
7535 * Operating systems Ramesh kumar __ C251 _06/26/06 03:10 5
7937 interfacing function calls of 2 proect Bernhard Baver €51 06/28/06 06:49 1 o
7531 pow csn I ensble Dalss Contiaious Addrezsing mode in AGDL Loz i Cs10s/28/0 01281
® Internet
ext dest tart A Forum
N I

& © Internet |

http://www.keil.com

