
Microcontrol lers

Appl icat ion Note, V 1.0, August 2008

XC864 Flash Download
Using Bootstrap Loader

AP08084

Edition 2008-08
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.

LEGAL DISCLAIMER:
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION
OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY
ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY
DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY
THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume
that the health of the user or other persons may be endangered.

http://www.infineon.com

XC864

Revision History: 2008-08 V 1.0
Previous Version: none
Version Subjects (major changes since last revision)
V 1.0 Initial release for XC864

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

mailto:mcdocu.comments@infineon.com

AP08084
XC864 Flash Download Using Bootstrap Loader

Introduction
1 Introduction
A built-in bootstrap loader (BSL) is implemented in the XC800 family to provide a
mechanism to load data / code into the internal memory of the device (XRAM or FLASH)
via a UART interface. In variants that support external memory, it is also possible to load
data / code to the external memory.
The protocol used in the XC800 family is standard, although there might be a slight
variation due to different structures of the flash memory.

1.1 Overview
This document provides a cookbook on the BSL mode for XC864. It will show detailed
steps on flash downloading.
The XC864 devices use the LIN protocol in BSL mode including the Fast LIN option as
described below.
The user’s manual contains detailed information about the BSL mode protocol.
This example code is additionally provided for reference. Although the code has been
tested, there is no warranty provided.
There are four files containing the example code:

xc800_bsl.cpp : code that contains the API for BSL mode
xc800_bsl.h : corresponding header file
xc800.cpp : main example code on how to use the API
xc800_verify.h : verification code to be loaded into XRAM

These files can be compiled in Visual C 6.0.
Please note that the example code also provides routines for other devices of the
XC800 family. Thus routines dedicated to the XC864 device are indicated by the
“_xc864” suffix.

In order to run the example code, the PC host needs to be connected to a starterkit with
a UART cable
The following files may also be included for tips and recommendations:
(Please note that these files are optional)

verify_lin.a51 : assembly code that can be downloaded to verify the
content of the flash.

verify_lin.hex : hex file generated from the above assembly code.
Application Note 1 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Supported BSL Mode in XC864
2 Supported BSL Mode in XC864
In order to gain access to the BSL mode, the chip must be reset with MBC and TMS
pins pulled low externally.
The following hardware pins are used:
P1.0: Used as RXD (IN)
P1.1: Used as TXD (OUT)

Note: Please refer to chapter 7.2.3 in the user’s manual for detailed information on
the booting scheme and entering BSL mode.

2.1 LIN Mode
To enter the LIN BSL mode, the following steps have to be done by the PC Host:
1. Send the bsl_lin_header() instruction to initialize LIN communication.

Parameter to be used:
bslHeader.NAD = 0x7F
bslHeader.startAddr = 0xF000
bslHeader.mode = 0
bslHeader.fastLin = 1 (to enter the Fast LIN mode)
bslHeader.baudrate = <baud rate>

Wait for 9 bytes acknowledgement (embedded inside the function).
The routine will check that the second byte has a value of 0x55 to indicate a
success.
Fast LIN BSL is an enhanced feature in the XC864 device, supporting higher baud
rates of up to 1152001) bit/second.
When Fast LIN BSL mode is entered, the microcontroller will switch to the BSL
UART protocol at the calculated baud rate. The microcontroller will stay at FAST
LIN BSL and the communication structure will be the same as in UART BSL
mode.

2. Send the bsl_erase_flash_xc864() instruction to erase the flash memory.
All sectors of the flash memory will be erased.
The flash erase will commence before the acknowledgement is sent from the
microcontroller. Hence, there is a waiting time for about 100 ms.
Wait for 1 byte acknowledgement: 0x55 (embedded inside the function).

1) This is higher than the Standard LIN, which supports only baud rates of up to 20 kbit/second.
Application Note 2 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Supported BSL Mode in XC864
3. Send the bsl_uart_header() instruction.
Parameter to be used:

bslHeader.mode = 2
bslHeader.dataLength = 321)

bslHeader.startAddr2) = <Starting Address - must by 32-byte aligned>
Wait for 1 byte acknowledgement: 0x55 (embedded inside the function).
Details about the header block and the type of acknowledgement is described in
Section 5.4 or in chapter 15 of the user’s manual.

4. Send the bsl_uart_data() instruction.
Parameter to be used:

bslData.dataLength = 32
bslData.cDataArray = <Pointer to the Data Array>

It is recommended to send only 32 bytes of data for flash programming at once.
The flash programming will commence before the acknowledgement is sent from
the microcontroller. Hence, there is a waiting time for about 2 ms.
Wait for 1 byte acknowledgement: 0x55 (embedded inside the function).

5. Repeat data sending until all data is sent (if and only if the address is
continuous).

6. Send the bsl_uart_eot() instruction.
This routine must have an empty data buffer (when this API is used for flash
download).
Parameter to be used:

bslEOT.dataLength = 32
bslEOT.lastCodeLength = 03)

Wait for 1 byte acknowledgement: 0x55 (embedded inside the function).
7. Complete the flash download by repeating step 3 to step 6 (in case of a

discontinous address).

Note: Step2 - Step6 are performed in the bsl_file_download_xc864() function
(see API in chapter 4).

1) The data length for flash programming is 32 bytes (1 wordline). No crossing of a wordline boundary is allowed
(see Section 5.2).

2) The Starting Address is set to 0x0000 by default.
3) In this example code all the program code bytes are transmitted in data blocks.
Application Note 3 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Supported BSL Mode in XC864
Note: The XC864 device uses a single wire connection. The HOST will receive its
sent bytes as an echo from the device immediately after sending. This
echo must be taken care of.

2.2 BSL Diagram for Code Download

Call:
bsl_erase_flash_xc864()

DONE

(for flash download)

This algorithm is used
in the routine:
bsl_file_download_xc864()

Call:
bsl_lin_header()

Call:
bsl_uart_header()

Call:
bsl_uart_data()

Address
continuous?

Call:
bsl_uart_eot()

no

Finish
downloading?

yes

no

Call:
bsl_autobaudrate() :
Application Note 4 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Flash Protection and Unprotection
3 Flash Protection and Unprotection
XC864 allows the flash to be protected by password after the download.
After the flash protection is done, no further flash downloading is possible. External
access to the device, including the flash, will be blocked depending on the selected
password.
In contrary to other devices of the XC800 family, the protection scheme for the XC864
device underlies certain conditions in terms of re-entering BSL mode:

1. In order to re-enter BSL mode of the flash protected device, the LSB of the
selected password must be set to 1. Otherwise user mode will be entered
immediately. Re-entering BSL mode is no longer possible.

2. The NAC (no activity count) of the device must be programmed with a valid
value (01h - 0Ch). The programming procedure of the NAC is decribed below.
In this example code the NAC is set to the maximum value of 0Ch.

After a hardware reset, NAC indicates the delay duration (multiplication of 5 ms) before
jumping to user mode. If a valid LIN header frame is received within this delay period,
the device will enter BSL mode. Due to the maximum value of 0Ch for NAC, the
maximum delay period is 60ms (0Ch * 5ms) as shown in this example code.

For NAC (and NAD) programming the last 9 bytes of the flash memory are reserved.
When LSB of the password is 1, LIN BSL routine will call a subroutine at address 0FF7h
to obtain the valid parameter values. The user has to ensure that the addresses 0FF7h
to 0FFFh are programmed with specified values, shown in Table 3-1. Default values are
used if the parameters are not within the valid range.
The respective bytes are programmed using the normal flash programming procedure.
The example code uses the function bsl_file_download_xc864() to program these
bytes.
After a hardware reset, the example code has to send a LIN header frame within less
than 60ms to enter BSL mode.
Application Note 5 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Flash Protection and Unprotection
The function bsl_file_download_xc864() ensures that the last 9 bytes of the flash
memory are always specified respectively. User code in this address range will be
overwritten.
Please refer to chapter 7.2.3 in the user’s manual for further information about the
conditions on how to enter user and BSL mode.

After downloading and NAC programming is done, the following instruction can be send:
1. Send bsl_uart_header() instruction.

Parameter to be used:
bslHeader.mode = 6
bslHeader.password = <1-byte password, LSB=1>

When flash is not protected yet, the microcontroller will enable the flash protection
scheme and the password will be stored.
When flash is already protected, the microcontroller will deactivate all flash protection, if
the user-password matches the stored password. The flash block will be
automatically erased and the stored password will be reset.

Table 3-1
Flash Address Parameter/

Instruction
Value Criteria /

Range
Default
values

0FF7h MOV R6, #xx 7Eh
0FF8h NAC ** 01h - 0Ch FFh (invalid)
0FF9h MOV R7, #xx 7Fh
0FFAh NAD ** 01h - FFh 7Fh (valid)
0FFBh RET 22h
0FFCh NAC ** 01h - 0Ch FFh (invalid)
0FFDh Not(NAC)1)

1) In order to ensure the validity of the 2 parameters, the inverted values need to be programmed together with
the actual values.

** FEh - F3h 00h
0FFEh NAD ** 01h - FFh 7Fh (valid)
0FFFh Not(NAD)1) ** FEh - 00h 80h
Application Note 6 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

API Description of XC800_BSL
4 API Description of XC800_BSL

4.1 Data Type Structure in XC800_BSL
typedef struct BSL_HEADER {

unsigned char NAD; // NAD for LIN.
unsigned char mode; // 0 = Download to XRAM

1 = Run from XRAM (0xF000)
2 = Download to FLASH
3 = Run from FLASH (0x0000)
4 = Erase Flash
6 = Password protect/unprotect

unsigned int startAddr; // Starting Address for mode 0 and 2.
unsigned char dataLength; // UART Mode:

 Data Byte Length to be
 written in a subsequent
 DATA Block.
LIN Mode:
 The number of subsequent data
 blocks that will be sent.

unsigned char fastLIN; // Only for LIN mode (0 = Normal
LIN, 1 = Fast LIN)

unsigned short password; // 1 byte password to protect
or unprotect flash (Mode 6 only)

DWORD dwBaudrate; // Baud rate (Only necessary for
LIN Mode)

unsigned char singlewire; // Set to 1 if single wire connection
is used.

unsigned char waitNoResponse; // Only for LIN mode.
If set to 1, it will not wait for
the acknowledge

unsigned char ucDeviceType; // Specify the device type
} BSL_HEADER;

typedef struct BSL_DATA {
unsigned char NAD; // NAD for LIN.
unsigned char *cDataArray; // Pointer to the data to be loaded.
unsigned char dataLength; // Data Byte Length to be loaded (MUST

be the same value as in BSL HEADER)
DWORD dwBaudrate; // Baud rate (Only necessary for LIN

Mode)
unsigned char singlewire; // Set to 1 if single wire connection

is used.
} BSL_DATA;
Application Note 7 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

API Description of XC800_BSL
typedef struct BSL_EOT {
unsigned char NAD; // NAD for LIN.
unsigned char *cDataArray; // Pointer to the data to be loaded.
unsigned char lastCodeLength; // Data Byte Length to be loaded

(lastCodeLength < dataLength).
unsigned char dataLength; // Data Byte Length as stated in BSL

HEADER
DWORD dwBaudrate; // Baud rate (Only necessary for LIN

Mode)
unsigned char singlewire; // Set to 1 if single wire connection

is used.
} BSL_EOT;

typedef struct BSL_DOWNLOAD {
char *hexFileName; // Hex File Name.
unsigned eraseFlash; // 0 = Flash will NOT be erased before

downloading
// 1 = Flash will be erased before

downloading
unsigned eraseOnly; // 0 = Flash will be downloaded after

erasing.
// 1 = Flash will NOT be downloaded

after erasing.
unsigned verbose; // 0 = No message will be displayed.

// 1 = (Default) Message will be
displayed.

unsigned *xram_valid; // 0 = No Download to externally
mapped XRAM is done

// 1 = Download to externally mapped
XRAM is done

unsigned char singleWire; // Set to 1 if single wire connection
is used.

unsigned char ucDeviceType; // Specify the device type
} BSL_DOWNLOAD;

typedef struct BSL_ERASE {
unsigned bankNumber; // Bank Number to indicate the bank to

be erased.
unsigned sectorNumber; // Sector Number to indicate the

sector to be erased.
unsigned char option; // Not used for XC864
unsigned char singleWire; // Set to 1 if single wire connection

is used.
unsigned char ucDeviceType; // Specify the device type

} BSL_ERASE;
Application Note 8 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

API Description of XC800_BSL
typedef struct AUTO_BAUDRATE {
unsigned char detection; // Detection Mode:

// 0 = UART Mode (No Auto Detection)
1 = LIN Mode (No Auto Detection)
2 = Auto Detection Mode
 Byte 0x80 will be send first
 and wait for 10ms.
 If no response, then proceed
 with LIN auto detection.

unsigned char mode; // Same as BSL HEADER
unsigned char fastLIN; // Only for LIN mode (0 = Normal LIN,

1 = Fast LIN)
DWORD dwBaudrate; // Baud rate
unsigned char singleWire; // Set to 1 if single wire connection

is used.
unsigned char waitNoResponse; // Only for LIN mode.

If set to 1, it will not wait for
the acknowledge

unsigned char nac; // no activity count
unsigned char nad; // NAD for LIN mode
bool bLIN; // Set to “true“ if LIN device
bool bReset; // enable reset by bsl_autobaudrate()
unsigned char ucDeviceType; // Specify the device type

} AUTO_BAUDRATE;

4.2 Function Prototypes in XC800_BSL
/*--
Function Name : bsl_init_uart()
Description : Responsible to initialize the UART Port (COM

PORT)
Following actions are done:
-) Initialize the chosen COM PORT with the
selected baud rate
-) Return the hComm handle.

The parameter *uiError will be updated accordingly.
Function Called : None
Input Parameter : *cPortName => Port Name (e.g: "COM1", "COM2"

etc)
dwBaudrate => Baud rate

Output Parameter : *hComm => Valid Communication Handle
*uiError => Error Code

Return Value : None
--*/
Application Note 9 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

API Description of XC800_BSL
/*--
Function Name : bsl_autobaudrate()
Description : Sending the first byte for auto baud rate

detection.
If UART or LIN auto detection is enabled, the
function will first send byte: 0x80 to detect if
it is UART or not. If there is no responds within
the specified time-out value, then send the first
LIN header (the chip must be reset again!!)

Function Called : bsl_lin_header()
Input Parameter : *hComm => Communication Handle.

*autobaud => AUTO_BAUDRATE structure.
Output Parameter : *autobaud => AUTO_BAUDRATE structure.

*uiError => Error Code.
Return Value : None
--*/

/*--
Function Name : bsl_lin_header()
Description : Sending the LIN Header Block.
Function Called : None
Input Parameter : *hComm => Communication Handle.

bslHeader => BSL_HEADER structure.
Output Parameter : *uiError => Error Code
Return Value : None
--*/

/*--
Function Name : bsl_erase_flash_xc864()
Description : Responsible to erase the flash memory
Input Parameter : *hComm => Communication Handle.

bslErase => BSL_ERASE Structure
Output Parameter : *uiError => Error Code
Return Value : None
--*/

/*--
Function Name : bsl_uart_header()
Description : Sending the UART Header Block.
Function Called : None
Input Parameter : *hComm => Communication Handle.

bslHeader => BSL_HEADER structure.
Output Parameter : *uiError => Error Code
Return Value : None
--*/
Application Note 10 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

API Description of XC800_BSL
/*--
Function Name : bsl_uart_data()
Description : Sending the UART Data Block.
Function Called : None
Input Parameter : *hComm => Communication Handle.

bslData => BSL_DATA structure.
Output Parameter : *uiError => Error Code
Return Value : None
--*/

/*--
Function Name : bsl_uart_eot()
Description : Sending the UART EOT Block.
Function Called : None
Input Parameter : *hComm => Communication Handle.

bslEOT => BSL_EOT structure.
Output Parameter : *uiError => Error Code
Return Value : None
--*/

/*--
Function Name : close_interface()
Description : Responsible to close all of the communication

channel (UART or JTAG)
Function Called : None
Input Parameter : *hComm => Communication Handle.
Output Parameter : *uiError => Error Code
Return Value : None
--*/

/*---
Function Name : file_download_xc864()
Description : The function to download the hex file.
Function Called : bsl_erase_flash_xc864(),bsl_uart_header()

bsl_uart_data(), bsl_uart_eot()
Input Parameter : *hComm => Communication Handle.

bslDownload => BSL_DOWNLOAD structure.
 .eraseFlash => 0: Flash is not erased before

 downloading.
1: Flash is erased before
 downloading.

 .eraseOnly => 0: Continue with flash download.
1: Do not continue with flash
 download after erase.

Output Parameter : *uiError => Error Code
Return Value : None
---*/
Application Note 11 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

API Description of XC800_BSL
/*---
Function Name : bsl_prepare_verification()
Description : Loads the verification code to XRAM and

executes it.
Function Called : bsl_uart_header(),bsl_uart_data(),

bsl_uart_eot()
Input Parameter : *hComm => Communication Handle.

autobaudrate => AUTO_BAUDRATE structure.
Output Parameter : *uiError => Error Code
Return Value : None

---*/
Application Note 12 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5 Tips and Recommendations

5.1 Flash Verification
Since it is not possible to use BSL mode to read out the memory content, there is a need
to download a verification program into XRAM and run it in order to verify the flash
content. For this purpose, the file verify_lin.a51 (verify_lin.hex) containing the
verification code, is provided.
After downloading the hex file content into XRAM, the code will do the following:

1. Auto baud rate detection.
HOST has to send bsl_autobaudrate() command.

2. Wait for the bsl_uart_header() from HOST.
The header block contains the starting address for the verification.
HOST has to send bsl_uart_header() instruction with MODE=2

3. Wait for the bsl_uart_data() from HOST.
HOST will send data blocks containing the code that was downloaded to the
flash before. The data bytes received from the HOST will be compared with the
data bytes stored in the flash.

5. Step 3 will be repeated until all code in a continuous address space is verified.
In case of a mismatch of received and stored data byte the microcontroller will
send a verification error response as described below for each byte.

6. HOST has to send the bsl_uart_eot() instruction. Important: the parameter
lastCodeLength has to be 0.

7. Complete the flash download by repeating Step 2 - Step 6 (in case of a
discontinuous address). After completing the verification, HOST will reset the
device and reinitialize the BSL mode.

In case of mismatch of received and stored data byte, the following response will be sent
for each error byte:

Verification Error Byte : 0xFC
High Byte Address : 0xXX
Low Byte Address : 0xXX
Actual Data Byte : 0xXX
Expected Data Byte : 0xXX
Application Note 13 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5.2 Flash / XRAM Memory Mapping

The XC864 device offers flash devices with 4 Kbytes of embedded flash memory. The
flash bank is mapped to both address range 0000H – 0FFFH and A000H – AFFFH,
physically there is only one 4 Kbytes flash bank.
The sectorization of the flash memory is shown in Table 5-1 below. The flash memory is
used for code and data storage.
A sector consists of 32-byte aligned wordlines.
The flash is erased sector-wise.
.

Table 5-1 Flash Memory Mapping
SECTOR Address Range Size

0 0x0000 - 0x03FF 1 Kbytes
1 0x0400 - 0x07FF 1 Kbytes
2 0x0800 - 0x09FF 512 bytes
3 0x0A00 - 0x0BFF 512 bytes
4 0x0C00 - 0x0CFF 256 bytes
5 0x0D00 - 0x0DFF 256 bytes
6 0x0E00 - 0x0E7F 128 bytes
7 0x0E80 - 0x0EFF 128 bytes
8 0x0F00 - 0x0F7F 128 bytes
9 0x0F80 - 0x0FFF 128 bytes
Application Note 14 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5.3 Flow Chart of the Example Code

Reset device

Flash
protected?

Unprotect
 flash?

Call:
bsl_uart_header()
bslHeader.mode = 6

Successfull ?

Download hex using
bsl_file_download_xc864()

Successfull ?

Code downloading
done

Load verification
to XRAM

Call:
 bsl_autobaudrate()

 Call:
bsl_uart_header ()
bslHeader.mode = 1

Call:
 bsl_autobaudrate()

Verify hex using

Error ?

Reset device

Call:
 bsl_autobaudrate()

Protect
flash ?

Call:
bsl_uart_header()
bslHeader.mode = 6

Call:
 bsl_autobaudrate()

yes

no

no

DONE

no
yes

yes no

yes
no

yes

(Run code from XRAM)

yes

no

Download hex using
bsl_file_download_xc864()

code

bsl_file_download_xc864

Call:
 bsl_autobaudrate()

Reset device

Reset device
Application Note 15 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5.4 BSL Protocol Used

5.4.1 Flash / XRAM Code Download / Verification Using UART
Protocol in Fast LIN Model

5.4.2 Flash Erasing Using UART

5.4.3 Flash Protection / Unprotection Using UART

Header Block

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

TYPE
(0) MODE

Start
Address

High

Start
Address

Low
Block

Length Not Used Not Used Checksum

Data Block

Byte 0 Byte 1 - (Block_Length - 2) Byte (Block_Length - 1)

TYPE
(1)

Program Codes
((Block_Length - 2) byte) Checksum

EOT Block

Byte 0 Byte 1 Byte 2 -

TYPE
(2) Last_Codelength Program Codes

(Last_Codelength) byte
Not Used

(Block_Length-3-
Last_Codelength) byte

Checksum

Header Block

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

TYPE
(0)

MODE
(0x04)

Sector_P-
FL0

Sector_P-
FL1

Sector_P-
FL2

Sector
L_D-FL

Sector
H_D-FL Checksum

Header Block

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

TYPE
(0)

MODE
(0x06) Password Not Used Not Used Not Used Not Used Checksum
Application Note 16 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
Description
TYPE 0 = Header Block

1 = Data Block
2 = EOT Block

MODE 0 = Download to XRAM
1 = Execute code from XRAM (leave BSL mode)
2 = Download to flash
3 = Execute code from flash (leave BSL mode)
4 = Erase flash
6 = Flash protection / unprotection (leave BSL mode)

Start Address
High / Low

16 bit starting address for programming.

Block Length The number of bytes for the subsequent Data and
EOT blocks (including Type and Checksum)

Program Codes The bytes to be programmed into the memory.
LastCodeLength Length of program code in the EOT block (not 32-

byte aligned).
Password The password for the protection / unprotection of

flash (1 byte).
Sector_P-FL0 The sectors 0 to 2 of P-Flash Bank 0 are represented

by bits 0 to 21).
Sector_P-FL1 The sectors 0 to 2 of P-Flash Bank 1are represented

by bits 0 to 21).
Sector_P-FL2 The sectors 0 to 2 of P-Flash Bank 2are represented

by bits 0 to 21).
SectorL_D-FL The sectors 0 to 7 of D-Flash Bank are represented

by bits 0 to 71).
SectorH_D-FL The sectors 8 to 9 of D-Flash Bank are represented

by bits 0 to 11).
Response
(Acknowledge
Frame)

0x55 = OK
0xFE = Checksum Error
0xFD = Flash is protected
0xFC = Verification Error
0xFF = Block Error

1) Unwanted/ unselected bits should be cleared to 0.
Application Note 17 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5.4.4 LIN Auto Baud Rate Detection

==> Wait 700 µs (maximum)

==> Wait 10 ms

==> Wait 700 µs (maximum)

==> Wait 40 ms
==> Wait for Acknowledgement Frame (9 Bytes)

An Acknowledgement Frame can be always requested sending a Slave Response
Header to the device.

It is recommended to request an acknowledgement after each Master Request Header
sent.
As described in the following sections, all commands to the device are sent via the
Master Request Header.

Master Request Header + Command

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9 Byte10
SYN
Char

(0x55)
ID

(0x3C)
NAD

(0x7F) 0x00 0x00 0x00 0x00 0x00 0x00 Fast LIN
0x01

Check
sum

(0x80)

Slave Response Header

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte 0 Byte 1

SYN Char
(0x55)

ID
(0x7D)

LIN Acknowledgement Frame:

Byte0 Byte1 Byte2 - Byte7 Byte8

NAD Response Not Used
(6 bytes) Checksum
Application Note 18 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5.4.5 Flash / XRAM Code Download / Verification Using LIN

==> Wait 700 µs (maximum)

==> Wait 700 µs (maximum)

==> Wait 700 µs (maximum)

Header Block

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9 Byte10
SYN
Char

(0x55)
ID

(0x3C)
NAD

(0x7F)
TYPE
(0x00) MODE

Start
Addr
High

Start
Addr
Low

Data
Count

Not
Used

Fast LIN
0x01

Check
sum

Data Block

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte0 Byte1 Byte2 Byte3 Byte4 - Byte9 Byte10
SYN
Char

(0x55)
ID

(0x3C)
NAD

(0x7F)
TYPE
(0x01)

Program Code
(6 bytes)

Check
sum

EOT Block

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 - Byte8 Byte9 Byte10
SYN
Char

(0x55)
ID

(0x3C)
NAD

(0x7F)
TYPE
(0x02)

Last Code
Length Program Code Not

Used
Check
sum
Application Note 19 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
5.4.6 Flash Erasing Using LIN

==> Wait 700 µs (maximum)

5.4.7 Flash Protection / Unprotection Using LIN

==> Wait 700 µs (maximum)

Note: A Slave Response Header can be sent after each Master Request Block in
order to request an Acknowledgement Frame from the device (see
Section 5.4.4).

Note: The only LIN frame used in this example code is the LIN “Auto baud rate
Detection” frame (see Section 5.4.4) in order to enter Fast LIN BSL mode.
The microcontroller will switch to the BSL UART protocol and the
communication structure will be the same as in UART BSL mode.

Header Block

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9 Byte10
SYN
Char

(0x55)
ID

(0x3C)
NAD

(0x7F)
TYPE
(0x00)

MODE
(0x04)

Sector
_P-
FL0

Sector
_P-
FL1

Sector
_P

-FL2
Sector
L_D-FL

Sector
H_D-FL

Check
sum

Header Block

Byte 0

SYN Break: 0x0
(Half baud rate)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9 Byte10
SYN
Char

(0x55)
ID

(0x3C)
NAD

(0x7F)
TYPE
(0x00)

MODE
(0x06)

Pass-
word

Not
Used

Not
Used

Not
Used

Not
Used

Check
sum
Application Note 20 V 1.0, 2008-08

AP08084
XC864 Flash Download Using Bootstrap Loader

Tips and Recommendations
Description
TYPE 0 = Header Block

1 = Data Block
2 = EOT Block

MODE 0 = Download to XRAM
1 = Execute Code from XRAM (leave BSL mode)
2 = Download to flash
3 = Execute Code from flash (leave BSL mode)
4 = Erase flash
6 = Flash Protection / unprotection

Fast LIN 0 = Disable Fast LIN BSL
1 = Enable and enter Fast LIN BSL mode (used in
this example code)

Start Address
High / Low

16 bit starting address for programming.

Data Count The number of data blocks to be subsequently sent
during programming1).

Program Codes The bytes to be programmed into the memory.
LastCodeLength Length of program code in the EOT block
Password Password for protection / unprotection of flash.
Sector_P-FL0 The sectors 0 to 2 of P-Flash Bank 0 are represented

by bits 0 to 22).
Sector_P-FL1 The sectors 0 to 2 of P-Flash Bank 1are represented

by bits 0 to 21).
Sector_P-FL2 The sectors 0 to 2 of P-Flash Bank 2are represented

by bits 0 to 21).
SectorL_D-FL The sectors 0 to 7 of D-Flash Bank are represented

by bits 0 to 71).
SectorH_D-FL The sectors 8 to 9 of D-Flash Bank are represented

by bits 0 to 11).
Response
(Acknowledge
Frame)

0x55 = OK
0xFE = Checksum Error
0xFD = Flash is protected
0xFC = Verification Error
0xFF = Block Error

1) The length of program code in the data block is fixed to 6 bytes.
2) Unwanted/ unselected bits should be cleared to 0.
Application Note 21 V 1.0, 2008-08

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	1 Introduction
	1.1 Overview

	2 Supported BSL Mode in XC864
	2.1 LIN Mode
	2.2 BSL Diagram for Code Download

	3 Flash Protection and Unprotection
	4 API Description of XC800_BSL
	4.1 Data Type Structure in XC800_BSL
	4.2 Function Prototypes in XC800_BSL

	5 Tips and Recommendations
	5.1 Flash Verification
	5.2 Flash / XRAM Memory Mapping
	5.3 Flow Chart of the Example Code
	5.4 BSL Protocol Used
	5.4.1 Flash / XRAM Code Download / Verification Using UART Protocol in Fast LIN Model
	5.4.2 Flash Erasing Using UART
	5.4.3 Flash Protection / Unprotection Using UART
	5.4.4 LIN Auto Baud Rate Detection
	5.4.5 Flash / XRAM Code Download / Verification Using LIN
	5.4.6 Flash Erasing Using LIN
	5.4.7 Flash Protection / Unprotection Using LIN

